Advertisement

Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 6, pp 546–554 | Cite as

Deposition of Ti–Ni–Zr–Mo–Al–C Composite Coatings on the Ti6Al4V Alloy by Electrospark Alloying in a Granule Medium

  • A. A. Burkov
  • E. R. Zaikova
  • M. I. Dvornik
Article
  • 4 Downloads

Abstract

The paper describes deposition of Ti–Ni–Zr–Mo–Al–C composite coatings on the Ti6Al4V alloy by electrospark alloying in a medium consisting of granules of individual metals and a Ti3Al + 10%C alloy. The mass transfer pattern during deposition is studied; it is found that the mass transfer coefficient is 18%. The thickness of the deposited coatings is about 50 μm. According to X-ray diffraction analysis, the coating composition is represented by AlNi2Ti, MoNi4, and NiTi intermetallic compounds. The average roughness of the coatings Ra is about 3 μm. The microhardness of the deposited layer is three times higher than that of the Ti6Al4V titanium alloy. The wear resistance of the Ti–Ni–Zr–Mo–Al–C coating to dry sliding friction against steel R6M5 is five times higher than that of the Ti6Al4V alloy. The presence of a Ti–Ni–Zr–Mo–Al–C coating on the Ti6Al4V alloy leads to a twofold increase in the surface resistance to high-temperature gas corrosion. The proposed approach makes it possible to obtain electrospark composite coatings based on multicomponent alloys, which are not inferior to coatings prepared by conventional electrospark alloying, in an automatic mode without sophisticated hardware and software.

Keywords

Ti6Al4V titanium alloy Ti–Ni–Zr–Mo–Al–C composite coatings electrospark alloying electrospark alloying in granules wear resistance heat resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, J., Ma, J., Huang, W., Wang, L., et al., Surf. Coat. Technol., 2017, vol. 316, pp. 22–29.CrossRefGoogle Scholar
  2. 2.
    Pawlak, W., Kubiak, K.J., Wendler, B.G., and Mathia, T.G., Tribol. Int., 2015, vol. 82, pp. 400–406.CrossRefGoogle Scholar
  3. 3.
    Wang, S., Liao, Z., Liu, Y., and Liu, W., Surf. Coat. Technol., 2014, vol. 252, pp. 64–73.CrossRefGoogle Scholar
  4. 4.
    Jelínek, M., Kocourek, T., Zemek, J., Mikšovský, J., et al., Mater. Sci. Eng., C, 2015, vol. 46, pp. 381–338.CrossRefGoogle Scholar
  5. 5.
    Muhaffel, F., Cempura, G., Menekse, M., Czyrska- Filemonowicz, A., et al., Surf. Coat. Technol., 2016, vol. 307, pp. 308–315.CrossRefGoogle Scholar
  6. 6.
    Weng, F., Yu, H., Liu, J., Chen, C., et al., Opt. Laser Technol., 2017, vol. 92, pp. 156–162.CrossRefGoogle Scholar
  7. 7.
    Machethe, K.E., Popoola, A.P.I., Adebiyi, D.I., and Fayomi, O.S.I., Proc. Manuf., 2017, vol. 7, pp. 549–555.Google Scholar
  8. 8.
    Liu, Y., Wang, D., Deng, C., Huo, L., et al., Surf. Eng., 2015, vol. 31, pp. 892–897.CrossRefGoogle Scholar
  9. 9.
    Burkov, A.A., Pyachin, S.A., Metlitskaya, L.P., and Pugachevskii, M.A., Uprochnyayushchie Tekhnol. Pokrytiya, 2013, no. 5, pp. 16–21.Google Scholar
  10. 10.
    Burkov, A.A. and Pyachin, S.A., Mater. Des., 2015, vol. 80, pp. 109–115.CrossRefGoogle Scholar
  11. 11.
    Pyachin, S.A., Burkov, A.A., Ershova, T.B., Vlasova, N.M., et al., Zagotovitel’nye Proizvod. Mashinostr., 2016, no. 8, pp. 37–44.Google Scholar
  12. 12.
    Pyachin, S.A., Ershova, T.B., Burkov, A.A., Vlasova, N.M., et al., Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 3, pp. 266–272.CrossRefGoogle Scholar
  13. 13.
    Wang, R., He, X., Gao, Y., Yao, X., et al., Mater. Sci. Eng., C, 2017, vol. 75, pp. 7–15.CrossRefGoogle Scholar
  14. 14.
    Burkov, A.A., Pis’ma Mater., 2015, no. 5 (20), pp. 371–375.Google Scholar
  15. 15.
    Jin, J., Duan, H., and Li, X., Vacuum, 2017, vol. 136, pp. 112–120.CrossRefGoogle Scholar
  16. 16.
    Liu, H., Zhang, X., Jiang, Y., and Zhou, R., J. Alloy Compd., 2016, vol. 670, pp. 268–274.CrossRefGoogle Scholar
  17. 17.
    Lv, Y.H., Li, J., Tao, Y.F., and Hu, L.F., Appl. Surf. Sci., 2017, vol. 402, pp. 478–494.CrossRefGoogle Scholar
  18. 18.
    Lin, Y., Yao, J., Lei, Y., Fu, H., et al., Opt. Laser Eng., 2016, vol. 86, pp. 216–227.CrossRefGoogle Scholar
  19. 19.
    Bai, L.L., Li, J., Chen, J.L., Shao, J.Z., et al., Opt. Laser Eng., 2016, vol. 76, pp. 33–45.CrossRefGoogle Scholar
  20. 20.
    Kovâcik, J., Baksa, P., and Emmer, Š., Acta Metall. Slov., 2016, vol. 22, no. 1, pp. 52–59.CrossRefGoogle Scholar
  21. 21.
    Yu, P.-C., Liu, X.-B., Lu, X.-L., Qiao, S.-J., et al., RSC Adv., 2015, vol. 5, pp. 76516–76525.CrossRefGoogle Scholar
  22. 22.
    Bagdasaryan, A.A., Wegierek, P., and Shakhova, I., in Proc. 6th Int. Conf. “Nanomaterials: Applications and Properties,” November 28, 2016, Lvov: Inst. Electr. Electron. Eng., 2016, pp. 1–3. doi 10.1109/ NAP.2016.7757224Google Scholar
  23. 23.
    Zhang, T. and Sun, R., Heat Treat. Met., 2016, vol. 41, no. 3, pp. 57–60.Google Scholar
  24. 24.
    Lazarenko, N.I. and Lazarenko, B.R., Elektron. Obrab. Mater., 1977, no. 3, pp. 12–16.Google Scholar
  25. 25.
    Verkhoturov, A.D., Formirovanie poverkhnostnogo sloya metallov pri elektroiskrovom legirovanii (Metal Surface Coating by Electrospark Alloying), Vladivostok: Dal’nauka, 1995.Google Scholar
  26. 26.
    Guo, S., Ng, C., Lu, J., and Liu, C.T., J. Appl. Phys., 2011, vol. 109, p. 103505.CrossRefGoogle Scholar
  27. 27.
    Young, D.J., High Temperature Oxidation and Corrosion of Metals, London: Elsevier, 2008.Google Scholar
  28. 28.
    Burkov, A.A., Pyacin, S.A., Ermakov, M.A., and Syuy, A.V., J. Mater. Eng. Perform., 2017, vol. 26, pp. 901–908.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Materials ScienceKhabarovsk Research Center, Far East Branch, Russian Academy of SciencesKhabarovskRussia

Personalised recommendations