Advertisement

Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 6, pp 562–576 | Cite as

Instability of Ferrous Sulfate Bath for Electrodeposition of Nanocrystalline Iron Coating

  • A. Bahrololoomi
  • M. E. BahrololoomEmail author
Article
  • 3 Downloads

Abstract

Nanocrystalline iron coatings were electrodeposited at six different current densities, from 1 to 25 A dm–2 from a bath containing iron(II) sulfate at 60 and 80°C. The impact of the current density on the bath deterioration was investigated. The bath color changed from emerald green (485 nm maximum absorption wavelength, λmax) to turbid yellow (λmax = 470 nm) with some orange precipitates after electrodeposition up to 10 A dm–2. Further electrodeposition up to 25 A dm–2 changed the bath colour to dark brown (λmax = 435 nm). Ultraviolet-Visible spectra were recorded to verify the bath deterioration, which, in turn, prevented the coating growth. The color change and also the shift of the maximum absorption wavelength were discussed in terms of the crystal field theory and also of the anodic oxidation of the hexaaquairon(II) ion to the hexaaquairon(III) ion on the anode surface. The Pourbaix diagram for iron was used to interpret these results and the instability of the bath which was utilized here for electrodeposition of nanocrystalline iron coatings. Addition of saccharin also led to the bath instability. The influence of the bath instability on the average grain size, appearance, surface morphology and thickness of the coatings was discussed. The results proved that the iron(II) sulfate solution is an unstable bath for electrodeposition of nanocrystalline iron coatings.

Keywords

electrodeposition nanocrystalline iron bath instability crystal field theory Pourbaix diagram saccharin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harty, S.F., McGeough, J.A., and Tulloch, R.M., Surf. Technol., 1981, vol. 12, pp. 39–55.CrossRefGoogle Scholar
  2. 2.
    Watanabe, T. Nano Plating—Microstructure Formation Theory of Plated Films and a Database of Plated Films, Amsterdam: Elsevier, 2004.Google Scholar
  3. 3.
    Kasper, C.H., J. Res. Natl. Bur. Stand. (U.S.), 1937, vol. 18, pp. 535–541.CrossRefGoogle Scholar
  4. 4.
    Zakirov, S.Z., Met. Sci. Heat Treat., 1975, vol. 17, pp. 709–711.CrossRefGoogle Scholar
  5. 5.
    Moravej, M., Prima, F., Fiset, M., and Mantovani, D., Acta Biomater., 2010, vol. 6, pp. 1726–1735.CrossRefGoogle Scholar
  6. 6.
    Moravej, M., Purnama, A., Fiset, M., Couet, J., and Mantovani, D., Acta Biomater., 2010, vol. 6, pp. 1843–1851.CrossRefGoogle Scholar
  7. 7.
    Gow, K.V., Iyer, S.P., Wu, H.H., Castelliz, K.M., et al., Surf. Technol., 1979, vol. 8, pp. 333–346.CrossRefGoogle Scholar
  8. 8.
    Jartych, E., Zurawicz, J.K., Maczka, E., and Borc, J., Mater. Chem. Phys., 2001, vol. 72, pp. 356–359.CrossRefGoogle Scholar
  9. 9.
    Koza, J., Uhlemann, M., Gebert, A., and Schultz, L., J. Solid State Electrochem., 2008, vol. 12, pp. 181–192.CrossRefGoogle Scholar
  10. 10.
    Schlesinger, M. and Paunovic, M., Modern Electroplating, New York: Wiley, 2011.Google Scholar
  11. 11.
    Inoue, K., Nakata, T., and Watanabe, T., Mater. Trans., 2002, vol. 43, pp. 1318–1324.CrossRefGoogle Scholar
  12. 12.
    Lai, S.H., McGeough, J.A., and Lau, P., J. Mech. Work. Technol., 1978, vol. 1, pp. 231–243.CrossRefGoogle Scholar
  13. 13.
    Diaz, S.L., Calderón, J.A., Barcia, O.E., and Mattos, O.R., Electrochim. Acta, 2008, vol. 53, pp. 7426–7435.CrossRefGoogle Scholar
  14. 14.
    Afshari, V. and Dehghanian, C., J. Appl. Electrochem., 2010, vol. 40, pp. 1949–1956.CrossRefGoogle Scholar
  15. 15.
    Afshari, V. and Dehghanian, C., Anti-Corros. Methods Mater., 2010, vol. 57, pp. 142–147. https://doi.org/10.1108/00035591011040100.CrossRefGoogle Scholar
  16. 16.
    Afshari, V. and Dehghanian, C., Int. J. Mater. Res., 2010, vol. 101, pp. 366–371.CrossRefGoogle Scholar
  17. 17.
    Cotton, F.A., Wilkinson, G., Murillo, C.A., and Bochmann, M., Advanced Inorganic Chemistry, New York: Wiley, 1999.Google Scholar
  18. 18.
    Ballhausen, C.J. and Weiner, M.A., J. Electrochem. Soc., 1963, vol. 110, art. ID 97C.Google Scholar
  19. 19.
    Green, T.A., Gold Bull., 2007, vol. 40, no. 2, pp. 105–114.CrossRefGoogle Scholar
  20. 20.
    Green, T.A. and Roy, S., J. Electrochem. Soc., 2006, vol. 153, pp. 157–163.CrossRefGoogle Scholar
  21. 21.
    Lowinsohn, D., Alipázaga, M.V., Coichev, N., and Bertotti, M., Electrochim. Acta, 2004, vol. 49, pp. 1761–1766.CrossRefGoogle Scholar
  22. 22.
    Tjandrawan, V. and Nicol, M.J., Hydrometallurgy, 2013, vol. 131, pp. 81–88.CrossRefGoogle Scholar
  23. 23.
    Su, C.W., Yang, W., Guo, J.M., and Zhang, Y.J., Vacuum, 2012, vol. 86, pp. 2095–2101.CrossRefGoogle Scholar
  24. 24.
    Zarpellon, J., Jurca, H.F., Klein, J.J., Schreiner, W.H., et al., Electrochim. Acta, 2007, vol. 53, pp. 2002–2008.CrossRefGoogle Scholar
  25. 25.
    Evreinova, N.V., Shoshina, I.A., Naraev, V.N., and Tikhonov, K.I., Russ. J. Appl. Chem., 2008, vol. 81, pp. 1180–1183.CrossRefGoogle Scholar
  26. 26.
    Najafi Sayar, P. and Bahrololoom, M.E., Trans. IMF, 2009, vol. 87, pp. 246–253.CrossRefGoogle Scholar
  27. 27.
    Najafi Sayar, P. and Bahrololoom, M.E., J. Appl. Electrochem., 2009, vol. 39, pp. 2489–2496.CrossRefGoogle Scholar
  28. 28.
    Rashidi, A.M. and Amadeh, A., Surf. Coat. Technol., 2009, vol. 204, pp. 353–358.CrossRefGoogle Scholar
  29. 29.
    Shirazi, S.H., Bahrololoom, M.E., and Shariat, M.H., Surf. Eng. Appl. Electrochem., 2016, vol. 52, pp. 434–442.CrossRefGoogle Scholar
  30. 30.
    Williamson, G.K. and Hall, W.H., Acta Metall., 1953, vol. 1, pp. 22–31.CrossRefGoogle Scholar
  31. 31.
    Delahay, P., Pourbaix, M., and van Rysselberghe, P., J. Chem. Educ., 1950, vol. 27, p. 683.CrossRefGoogle Scholar
  32. 32.
    Al Tanvir, T., Hossain, M.E., Al Mamun, M., and Ehsan, M.Q., J. Bangladesh Acad. Sci., 2014, vol. 37, pp. 195–203.CrossRefGoogle Scholar
  33. 33.
    Haider, S.Z., Malik, K.J., and Ahmed, K.J., J. Bangladesh Acad. Sci., 1981, vol. 5, pp. 81–90.Google Scholar
  34. 34.
    Jovanovski, G., Croat. Chem. Acta, 2000, vol. 73, pp. 843–868.Google Scholar
  35. 35.
    Baran, E.J. and Yilmaz, V.T., Coord. Chem. Rev., 2006, vol. 250, pp. 1980–1999.CrossRefGoogle Scholar
  36. 36.
    Earnshaw, A. and Harrington, T.J., Chemistry of the Transition Elements (Oxford Chemistry), Oxford: Oxford Univ. Press, 1973.Google Scholar
  37. 37.
    Tabakovic, I., Riemer, S., Tabakovic, K., Sun, M., et al., J. Electrochem. Soc., 2006, vol. 153, pp. 586–593.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringShiraz UniversityShirazIran

Personalised recommendations