Advertisement

Effect of Doubly Charged Ions in Forming the Mass Spectra of Solid-State Substances in a Mass Spectrometer with Inductively Coupled Plasma

  • T. K. Nurubeili
Article
  • 13 Downloads

Abstract

The paper deals with the both theoretical and experimental justifications of the formation of doubly charged ions (M++) of several elements mass spectrometry with inductively coupled plasma (ICP-MS). The efficiency of the formation of both singly and doubly charged ions with the lowest value of the second ionization potential was shown using the Saha equation and thermodynamic modeling. The results of theoretical and experimental studies performed with by ICP-MS are compared. The accuracy of the calculated results is proved, and the possibility of their use for predicting the efficiency in forming M++ in ICP-MS was demonstrated.

Keywords

mass spectrometry with inductively coupled plasma doubly charged ions ionization efficiency thermodynamic modeling secondary ionization argon plasma second ionization potential of atoms of elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolshov, M.A., Karandashev, V.K., Tsisin, G.I., and Zolotarev, Yu.A., J. Anal. Chem., 2011, vol. 66, no. 6, pp. 548–564.CrossRefGoogle Scholar
  2. 2.
    Ramendik, G.I., Stepanov, A.I., Kharitonov, P.S., and Karmishenkov, V.P., Zavod. Lab., Diagn. Mater., 1999, vol. 65, no. 8, pp. 23–24.Google Scholar
  3. 3.
    Nurubeyli, T.K., AJP Fiz., 2016, vol. 12, no. 2, pp. 24–28.Google Scholar
  4. 4.
    Yavorskii, B.M., Detlaf, A.A., and Lebedev, A.K., Spravochnik po fizike dlya inzhenerov (Physical Handbook for Engineers), Moscow: Mir i Obrazovanie, 2006.Google Scholar
  5. 5.
    Pupyshev, A.A. and Surikov, V.T., Mass-spektrometriya s induktivno svyazannoi plazmoi. Obrazovanie ionov (Inductively Coupled Plasma Mass Spectrometry. The Formation of Ions), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2006.Google Scholar
  6. 6.
    Karandashev, V.K., Leykin, A.Yu., and Zhernokleeva, K.V., J. Anal. Chem., 2014, vol. 69, no. 1, pp. 22–30.CrossRefGoogle Scholar
  7. 7.
    D’Ilio, S., Majorani, C., Petrucci, F., Violante, N., and Senofonte, O., Anal. Methods, 2010, vol. 2, no. 12, pp. 2049–2054.CrossRefGoogle Scholar
  8. 8.
    Tănăselia, C., Frenţiu, T., Ursu, M., Vlad, M., et al., J. Optoelectron. Adv. Mater., 2008, vol. 2, no. 2, pp. 99–107.Google Scholar
  9. 9.
    Vatomin, N.A., Moiseev, G.K., and Trudov, B.G., Termodinamicheskoe modelirovanie v vysoko-temperaturnykh neorganicheskikh sistemakh (Thermodynamic Modeling in High-Temperature Inorganic systems), Moscow: Metallurgiya, 2002.Google Scholar
  10. 10.
    Smith, W.R. and Missen, R.W., Chemical Reaction Equilibrium Analysis. Theory and Algorithms, New York: Wiley, 2006.Google Scholar
  11. 11.
    Moiseev, G.K., Vatolin, N.A., Marshuk, L.A., and Il’inykh, N.I., Temperaturnye zavisimosti privedennoi energii Gibsa nekotorykh neorganicheksikh veshchestv (Temperature Dependences of the Gibbs Reduced Energy of Some Inorganic Substances), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 1997.Google Scholar
  12. 12.
    Timerbaev, A.R., J. Anal. At. Spectrom., 2014, vol. 29, no. 6, pp. 1058–1072.CrossRefGoogle Scholar
  13. 13.
    Rodrigues, J.L., Nunes, J.A., Batista, B.L., Souza, S.S., et al., J. Anal. At. Spectrom., 2008, vol. 23, no. 7, pp. 992–996.CrossRefGoogle Scholar
  14. 14.
    Bocca, B., Madeddu, R., Asara, Y., Tolu, P., et al., J. Trace Elem. Med. Biol., 2011, vol. 25, no. 1, pp. 19–26.CrossRefGoogle Scholar
  15. 15.
    Finley-Jones, H.J., Molloy, J.L., and Holcombe, J.A., J. Anal. At. Spectrom., 2008, vol. 23, no. 9, pp. 1214–1222.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Physics, Azerbaijan National Academy of SciencesBakuRepublic of Azerbaijan

Personalised recommendations