Advertisement

Electrochemical Machining of Aluminium Metal Matrix Composites

  • N. Rajesh Jesudoss Hynes
  • R. Kumar
Article

Abstract

High performance aluminium based metal matrix composites possess low machinability characteristic. Electrochemical machining (ECM) is one of the advanced machining processes, used for machining of these newly developed exotic materials. This article critically reviews the research work on experimental investigations on ECM of aluminium matrix composites. Besides, recently developed techniques such as abrasive assisted electrochemical machining, electrochemical grinding, electrochemical micromachining, and electrochemical drilling are explored in the processing of aluminium metal matrix composites.

Keywords

electrochemical machining process variants process parameters aluminium metal matrix applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pal, T.K., Mater. Manuf. Process., 2005, vol. 20, no. 4, pp. 717–726.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay, N.R., Ghosh, S. and Basumallick, A., Mater. Manuf. Process., 2007, vol. 22, no. 6, pp. 679–682.CrossRefGoogle Scholar
  3. 3.
    Ding, X., Liew, W.Y.H. and Liu, X.D., Wear, 2005, vol. 259, pp. 1225–1234.CrossRefGoogle Scholar
  4. 4.
    Hynes, N.R.J., Kumar, R., Tharmaraj, R. and Velu, P.S., AIP Conf. Proc., 2016, vol. 1728, pp. 1–5.Google Scholar
  5. 5.
    Sahin, Y., Kok, M. and Celik, H., J. Mater. Process. Technol., 2002, vol. 128, pp. 280–291.CrossRefGoogle Scholar
  6. 6.
    Chandrasekaran, H. and Johansson, J.O., CIRP Annu. Manuf. Tech., 1997, vol. 46, no. 1, pp. 493–496.CrossRefGoogle Scholar
  7. 7.
    Tomac, N., Tonnessen, K. and Rasch, F.O., CIRP Annu. Manuf. Tech., 1992, vol. 41, no. 1, pp. 55–58.CrossRefGoogle Scholar
  8. 8.
    Cronjager, L. and Meister, D., CIRP Annu. Manuf. Tech., 1992, vol. 41, no. 1, pp. 63–68.CrossRefGoogle Scholar
  9. 9.
    Avevor, Y., Moufki, A. and Nouari, M., Proc. CIRP, 2017, vol. 58, pp. 539–542.CrossRefGoogle Scholar
  10. 10.
    Hung, N.P., Boey, F.Y.C. and Khor, K.A., J. Mater. Process. Technol., 1995, vol. 48, nos. 1–4, pp. 291–297.CrossRefGoogle Scholar
  11. 11.
    Zhang, Z., Zhu, D., Qu, N. and Wang, M., Microsyst. Technol., 2007, vol. 13, no. 7, pp. 607–612.CrossRefGoogle Scholar
  12. 12.
    Ebeid, S.J., Hewidy, M.S., El-Taweel, T.A. and Youssef, A.H., J. Mater. Process. Technol., 2004, vol. 149, nos. 1–3, pp. 432–438.CrossRefGoogle Scholar
  13. 13.
    Neto, J.C.D.S., Silva, E.M.D., and Silva, M.B.D., J. Mater. Process. Technol., 2006, vol. 179, nos. 1–3, pp. 92–96.CrossRefGoogle Scholar
  14. 14.
    Zhu, D. and Xu, H.Y., J. Mater. Process. Technol., 2002, vol. 129, nos. 1–3, pp. 15–18.CrossRefGoogle Scholar
  15. 15.
    Davydov, A.D., Kabanova, T.B., and Volgin, V.M., Russ. J. Electrochem., 2017, vol. 53, no. 9, pp. 941–965.CrossRefGoogle Scholar
  16. 16.
    Kozak, J., J. Mater. Process. Technol., 1998, vol. 76, nos. 1–3, pp. 170–175.CrossRefGoogle Scholar
  17. 17.
    Rajurkar, K.P., Zhu, D., McGeough, J.A., Kozak, J., and Silva, A.D., CIRP Annu. Manuf. Technol., 1999, vol. 48, no. 2, pp. 567–579.CrossRefGoogle Scholar
  18. 18.
    McGeough, J.A., Principles of Electrochemical Machining, London: Chapman and Hall, 1974.Google Scholar
  19. 19.
    Lohrengel, M.M., Rataj, K.P., and Munninghoff, T., Electrochim. Acta, 2016, vol. 201, pp. 348–353.CrossRefGoogle Scholar
  20. 20.
    Xu, Z., Chen, X., Zhou, Z., Qin, P., and Zhu, D., Proc. CIRP, 2016, vol. 42, pp. 125–130.CrossRefGoogle Scholar
  21. 21.
    Singh, T. and Dvivedi, A., Int. J. Mach. Tool Manuf., 2016, vol. 105, pp. 1–13.CrossRefGoogle Scholar
  22. 22.
    Hocheng, H., Sun, Y.H., Lin, S.C., and Kao, P.S., J. Mater. Process. Technol., 2003, vol. 140, nos. 1–3, pp. 264–268.CrossRefGoogle Scholar
  23. 23.
    Wilson, J.F., Practice and Theory of Electrochemical Machining, New York: Wiley, 1971.Google Scholar
  24. 24.
    Rajurkar, K.P., Sundaram, M.M., and Malshe, A.P., Proc. CIRP, 2013, vol. 6, pp. 13–26.CrossRefGoogle Scholar
  25. 25.
    Neergat, M. and Weisbrod, K.R., Corros. Sci., 2011, vol. 53, no. 12, pp. 3983–3990.CrossRefGoogle Scholar
  26. 26.
    Hihara, L.H. and Panquites, P., US Patent 6110351, 2000.Google Scholar
  27. 27.
    Westley, J.A., Atkinson, J. and Duffield, A., J. Mater. Process. Technol., 2004, vol. 149, nos. 1–3, pp. 384–392.CrossRefGoogle Scholar
  28. 28.
    Chunhua, S., Di, Z., Zhiyong, L. and Lei, W., Finite Elem. Anal. Des., 2006, vol. 43, no. 2, pp. 168–172.CrossRefGoogle Scholar
  29. 29.
    Swain, A.K., Sundaram, M.M., and Rajurkar, K.P., J. Manuf. Process., 2012, vol. 14, no. 2, pp. 150–159.CrossRefGoogle Scholar
  30. 30.
    Sen, M. and Shan, H.S., Int. J. Mach. Tool Manuf., 2005, vol. 45, no. 15, pp. 1706–1716.CrossRefGoogle Scholar
  31. 31.
    Krishnaiah Chetty, O.V., and Radhakrishnan, V.A., Int. J. Mach. Tool Des. Res., 1981, vol. 21, no. 1, pp. 57–69.CrossRefGoogle Scholar
  32. 32.
    Konig, W. and Linderlauf, P., CIRP Annu. Manuf. Tech., 1978, vol. 27, no. 1, pp. 97–100.Google Scholar
  33. 33.
    Sankar, M., Gnanavelbabu, A., and Rajkumar, K., Proc. Eng., 2014, vol. 97, pp. 381–389.CrossRefGoogle Scholar
  34. 34.
    Goswami, R.N., Mitra, S. and Sarkar, S., Int. J. Adv. Manuf. Technol., 2009, vol. 40, pp. 729–741.CrossRefGoogle Scholar
  35. 35.
    Bhattacharyya, B., Malapati, M., and Munda, J., J. Mater. Process. Technol., 2005, vol. 169, pp. 485–492.CrossRefGoogle Scholar
  36. 36.
    Satishkumar, P., Dharmalingam, S., Raja, K., Lingadurai, K., et al., Int. J. Chem. Tech. Res., 2015, vol. 7, no. 1, pp. 203–211.Google Scholar
  37. 37.
    Rao, S.R., Padmanabhan, G., Mahesh, N.K. and Rukesh, R.A., Proc. Eng., 2014, vol. 97, pp. 1004–1011.CrossRefGoogle Scholar
  38. 38.
    Senthilkumar, K.L., Sivasubramanian, R., and Kalaiselvan, K., Port. Electrochim. Acta, 2009, vol. 27, no. 4, pp. 477–486.CrossRefGoogle Scholar
  39. 39.
    Pramanik, A., Int. J. Mach. Tool Manuf., 2014, vol. 86, pp. 44–61.CrossRefGoogle Scholar
  40. 40.
    Senthilkumar, C., Ganesan, G., and Karthikeyan, R., Int. J. Adv. Manuf. Technol., 2009, vol. 43, pp. 256–263.CrossRefGoogle Scholar
  41. 41.
    Senthilkumar, C., Ganesan, G., and Karthikeyan, R., Trans. Nonferrous Met. Soc. China, 2011, vol. 2, pp. 2294–2300.CrossRefGoogle Scholar
  42. 42.
    Hihara, L.H. and Panquites, P., Abrasive Grinding Mag., 2003, vol. 12, pp. 12–17.Google Scholar
  43. 43.
    Rajurkar, K.P. and Hewidy, M.S., J. Mech. Work. Technol., 1988, vol. 17, pp. 315–324.CrossRefGoogle Scholar
  44. 44.
    Toptan, F., Kilicarslan, A., and Kertil, I., Mater. Sci. Forum, 2010, vol. 192, pp. 636–637.Google Scholar
  45. 45.
    Rao, S.R. and Padmanabhan, G., Arch. Appl. Sci. Res., 2012, vol. 4, no. 4, pp. 1844–1849.Google Scholar
  46. 46.
    Rao, S.R. and Padmanabhan, G., Int. J. Appl. Sci. Eng., 2014, vol. 12, no. 2, pp. 87–97.Google Scholar
  47. 47.
    Rao, S.R. and Padmanabhan, G., J. Eng. Sci. Technol., 2015, vol. 10, no. 1, pp. 81–96.Google Scholar
  48. 48.
    Sankar, M., Gnanavelbabu, A. and Baskaran, R., Appl. Mech. Mater., 2014, vol. 606, pp. 193–197.CrossRefGoogle Scholar
  49. 49.
    Sankar, M., Baskaran, R., Rajkumar, K., and Gnanavelbabu, A., Appl. Mech. Mater., 2014, vol. 591, pp. 89–93.CrossRefGoogle Scholar
  50. 50.
    Solaiyappan, A., Mani, K., and Gopalan, V., Jordan J. Mech. Ind. Eng., 2014, vol. 8, no. 5, pp. 323–331.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMepco Schlenk Engineering CollegeSivakasiIndia
  2. 2.Department of Mechanical Engineering, Vels Institute of ScienceTechnology & Advanced StudiesChennaiIndia

Personalised recommendations