Advertisement

Thermoelectric Properties and Surface States in the Layers of Bi2Te3 Topological Insulators

  • A. A. Nikolaeva
  • L. A. Konopko
  • K. Rogatskii
  • P. P. Bodyul
  • I. Gergishan
Article
  • 21 Downloads

Abstract

The thermoelectric properties and Shubnikov–de Haas (SdH) oscillations of monocrystalline layers of a topological insulator (ТI) of n-type bismuth telluride were investigated. The monocrystalline Bi2Te3 layers were fabricated by the mechanical exfoliations of layers from a monocrystalline ingot of the appropriate composition. The cyclotron effective masses, the Dingle temperature, and the quantum mobilities of charge carriers were calculated from the experimental data by SdH oscillations both in longitudinal (HI) and in perpendicular (HI) magnetic fields at temperatures in the range of 2.1–4.2 K. It was found that the phase shift of the Landau levels index is 0.5 both for the parallel and for the perpendicular magnetic fields associated with the Berry phase of surface states. The power factor in the temperature range of 2–300 K was calculated from the temperature dependences of resistance and thermal e.m.f. It was stated that the power factor α2σ has a maximum value in the temperature range of 100–250 K, which corresponds to the maximum values for perfect monocrystals described in the literature. Taking into account that the heat conductivity in the thin layers is essentially lower than in the bulk samples, it is reasonable to expect a considerable increase in the thermoelectric efficiency over a wide temperature range, which is of great importance for the development of new highly effective thermoelectric materials based on thinner Bi2Te3 ТI layers for practical applications in thermogenerators and coolers.

Keywords

topological insulators bismuth telluride single-crystal layers SdH oscillations thermoelectricity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ioffe, L.F., Poluprovodnikovye termoelementy (Semiconductor Thermoelements), Moscow: Akad. Nauk SSSR, 1960.Google Scholar
  2. 2.
    Tritt, T.M., Annu. Rev. Mater. Res., 2011, vol. 41, pp. 433–448.CrossRefGoogle Scholar
  3. 3.
    Goldsmid, H.J., Thermoelectric Refrigeration, New York: Plenum, 1964.CrossRefGoogle Scholar
  4. 4.
    Rowe, D.M., CRC Handbook of Thermoelectrics, Boca Raton, Fl: CRC Press, 1995.CrossRefGoogle Scholar
  5. 5.
    Behnia, K., Fundamentals of Thermoelectricity, Oxford: Oxford Univ. Press, 2015. http://ukcatalogue.oup.com/product/9780199697663.do.CrossRefGoogle Scholar
  6. 6.
    Mishra, S.K., Satpathy, S. and Jepsen, O., JPCM, 1997, vol. 9, no. 2, p.461.Google Scholar
  7. 7.
    Kadel, K., Kumari, L., Li, W.Z., Huang J., et al., Nanoscale Res. Lett., 2011, vol. 6, no. 57, pp. 1–7.Google Scholar
  8. 8.
    Silva, L.W., Kaviany, M. and Uher, C., J. Appl. Phys., 2005, vol. 97, p. 114903.CrossRefGoogle Scholar
  9. 9.
    Ovsyannikov, S.V., Shchennikov, V.V., Vorontsov, G.V., Manakov, A.Y., et al., J. Appl. Phys., 2008, vol. 104, no. 5, art. ID 053713.Google Scholar
  10. 10.
    Meng, J.F., Shekar, N.V., Badding, J.V., Chung, D.Y., et al., J. Appl. Phys., 2001, vol. 90, no. 6, p. 2836.CrossRefGoogle Scholar
  11. 11.
    Fu, L. and Kane, C.L., Phys. Rev. B, 2007, vol. 76, art. ID 045302.Google Scholar
  12. 12.
    Hasan, M.Z. and Kane, C.L., Rev. Mod. Phys., 2010, vol. 82, no. 4, pp. 3045–3067.CrossRefGoogle Scholar
  13. 13.
    Qu, D.-X., Hor, Y.S., Xiong, J., Cava, R.J., et al., Science, 2010, vol. 329, no. 5993, p.821.CrossRefGoogle Scholar
  14. 14.
    Taskin, A., Ren, Z., Sasaki, S., Segawa, K., et al., Phys. Rev. Lett., 2011, vol. 107, art. ID 016801.Google Scholar
  15. 15.
    Takahashi, R. and Murakami, S., Semicond. Sci. Technol., 2012, vol. 27, no. 12, p. 124005.CrossRefGoogle Scholar
  16. 16.
    Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B, 1993, vol. 47, no. 19, p. 12727.CrossRefGoogle Scholar
  17. 17.
    Dresselhaus, M.S., Dresselhaus, G., Sun, X., Zhang, Z., et al., Phys. Solid State, 1999, vol. 41, no. 5, pp. 679–682.CrossRefGoogle Scholar
  18. 18.
    Heremans, J.P., Thrush, C.M., and Morelh, D.T., Phys. Rev. B, 2004, vol. 70, p. 115334.CrossRefGoogle Scholar
  19. 19.
    Hicks, L.D., Harman, T.C., and Dresselhaus, M.S., Appl. Phys. Lett., 1993, vol. 63, no. 23, p. 3230.CrossRefGoogle Scholar
  20. 20.
    Venkatasubramanian, R., Siivola, E., Colpitts, T., et al., Nature, 2001, vol. 413, pp. 597–602.CrossRefGoogle Scholar
  21. 21.
    Goyal, V., Teweldebrhan, D. and Balandin, A.A., Appl. Phys. Lett., 2010, vol. 97, p. 133117.CrossRefGoogle Scholar
  22. 22.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., et al., Science, 2004, vol. 306, no. 5696, pp. 666–669.CrossRefGoogle Scholar
  23. 23.
    Konopko, L.A., Nikolaeva, A.A., and Khuber, T.E., Nanosyst., Nanomater., Nanotechnol., 2011, vol. 9, no. 1, pp. 67–75.Google Scholar
  24. 24.
    Brandt, N.B. and Chudinov, S.M., Eksperimental’nye metody issledovaniya energeticheskikh spektrov elektronov i fonov v metallakh (Analysis of Energy Spectra of Electrons and Photons in Metals), Moscow: Mosk. Gos. Univ., 1983.Google Scholar
  25. 25.
    Seeger, K., Semiconductor Physics: An Introduction, 2004, 9th ed.CrossRefzbMATHGoogle Scholar
  26. 26.
    He, L., Xiu, F., Yu, X., Teague, M., et al., Nano Lett., 2012, vol. 12, pp. 1486–1490.CrossRefGoogle Scholar
  27. 27.
    Luk’yanova, L.N., Boikov, Yu.A., Danilov, V.A., Usov, O.A., Volkov, M.P., and Kutasov, V.A., Phys. Solid State, 2014, vol. 56, no. 5, pp. 941–947.CrossRefGoogle Scholar
  28. 28.
    Schoenberg, D., Magnetic Oscillations in Metals, Cambridge: Cambridge Univ. Press, 2009.Google Scholar
  29. 29.
    Rischau, C.W., Leridon, B., Fauqué, B., Metayer, V., and van der Beek, C.J., Phys. Rev. B, 2013, vol. 88, no. 20, art. ID 205207.Google Scholar
  30. 30.
    Ren, Z., Taskin, A.A., Sasaki, S., Segawa, K., et al., Phys. Rev. B, 2010, vol. 82, art. ID 241306.Google Scholar
  31. 31.
    Boikov, Yu.A., Gribanova, O.S., Danilov, V.A., and Kutasov, V.A., Fiz. Tverd. Tela, 1991, vol. 11, p. 3414.Google Scholar
  32. 32.
    Konopko, L.A., Nikolaeva, A.A., Huber, T.E. and Meglei, D.F., Phys. Status Solidi C, 2014, vol. 11, pp. 1377–1381.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. A. Nikolaeva
    • 1
    • 2
  • L. A. Konopko
    • 1
    • 2
  • K. Rogatskii
    • 2
  • P. P. Bodyul
    • 3
  • I. Gergishan
    • 1
  1. 1.Ghitu Institute of Electronic Engineering and NanotechnologiesAcademy of Sciences of MoldovaChisinauRepublic of Moldova
  2. 2.Institute of Low Temperature and Structural ResearchPolish Academy of SciencesWrocławPoland
  3. 3.Technical University of MoldovaChisinauRepublic of Moldova

Personalised recommendations