Advertisement

Russian Meteorology and Hydrology

, Volume 44, Issue 9, pp 594–602 | Cite as

Numerical Simulation of World Ocean Effects on Temperature and Ozone in the Lower and Middle Atmosphere

  • A. R. JakovlevEmail author
  • S. P. Smyshlyaev
Article
  • 9 Downloads

Abstract

The description of the ocean-atmosphere coupling is presented. The paper analyzes the data of MERRA, JRA, ERA-Interim, and ERA-20Century reanalyses and the re suits of CCM chemistry-climate model simulations based on monthly mean values of air temperature and ozone mixing ratio at the levels of 925 and 20 hPa during 1980–2015. The comparison with data on sea surface temperature is provided. The results of simula-ion are in good agreement with reanalysis data for the atmospheric surface layer, whereas essential differences for the stratosphere require a more detailed analysis. According to the model results, air temperature rises in the surface layer, and air temperature and ozone mixing ratio decrease in the stratosphere. Reanalysis data do not coniradict simuiaiion results for the troposphere but differ significantly for the stratosphere.

Keywords

World Ocean sea surface temperature numerical model reanalysis data air temperature ozone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

The research was performed at the Russian State Hydrometeorological University in the framework of the State Assignment of the Ministry of Higher Education and Science of the Russian Federation (project 5.6493.2017/8.9) and was supported by the Russian Foundation for Basic Research (grant 17-05-01277) and Russian Science Foundation (grant 19-17-00198).

References

  1. 1.
    N. Z. Ariel’ and L. A. Strokina, Dynamic Characteristics of interaction between the Atmosphere and World Ocean Surface (Gidrometeoizdat, Leningrad, 1986) [in Russian].Google Scholar
  2. 2.
    A. B. Bendik and V. N. Yakovlev, “On the Rapprochement of Approaches to the Understanding of El Niño/La Niña Phenomenon,” Vestnik Rossiiskogo Gosudarstvennogo Universiteta im. Kanta, No. 1 (2010) [in Russian].Google Scholar
  3. 3.
    E. M. Volodin, V. Ya. Galin, and A. S. Gritsun, Mathematical Modeling of Terrestrial System, Ed. by N. G. Yakovlev (MAKS Press, Moscow, 2016) [in Russian].Google Scholar
  4. 4.
    V. Ya. Galin, S. P. Smyshlyaev, and E. M. Vologin, “Combined Chemistry-Climate Model of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 43 (2007) [Izv., Atmos. Oceanic Phys., No. 4, 43 (2007)].Google Scholar
  5. 5.
    Yu. P. Doronin, “Ice Cover Effects on the Ocean-Atmosphere Heat Exchange,” Problemy Arktiki i Antarktiki, No. 43–44 (1974) [in Russian].Google Scholar
  6. 6.
    E. A. Zhadin, “Arctic Oscillation and Interannual Variations in Sea Surface Temperature in the Atlantic and Pacific Oceans,” Meteorol. Gidrol., No. 8 (2001) [Russ. Meteorol. Hydrol., No. 8 (2001)].Google Scholar
  7. 7.
    E. A. Zhadin, “Long-term Cyclicity of Ocean Surface Temperature, Lower Stratospheric Temperature, and Ozone in Midlatitudes,” Meteorol. Gidrol., No. 5 (1993) [Russ. Meteorol. Hydrol., No. 5 (1993)].Google Scholar
  8. 8.
    E. A. Zhadin, “Interannual Ozone Anomalies and Temperature Variations of the Atlantic Ocean,” Meteorol. Gidrol., No. 7 (1992) [Russ. Meteorol. Hydrol., No. 7 (1992)].Google Scholar
  9. 9.
    S. S. Lappo, S. K. Gulev, and A. E. Rozdestvenskii, Large-scale Heat Interaction in the Ocean-Atmosphere System and Energy Active Zones of the World Ocean (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  10. 10.
    S. P. Smyshlyaev, V. Ya. Galin, E. M. Atlaskin, and P. A. Blakitnaya, “Simulation of the Indirect Impact that the 11-Year Solar Cycle Has on the Gas Composition of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 5, 46 (2010)].Google Scholar
  11. 11.
    S. P. Smyshlyaev, V. Ya. Galin, G. Shaariibuu, and M. A. Motsakov, “Modeling the Variability of Gas and Aerosol Components in the Stratosphere of Polar Regions,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 3, 46 (2010)].Google Scholar
  12. 12.
    A. Czaja, “Ocean-atmosphere Coupling in Midlatitudes: Does it Invigorate or Damp the Storm Track?”, in ECMWF Seminar on Seasonal Prediction, 3–7 September 2012. Google Scholar
  13. 13.
  14. 14.
    E. L. Fleming, S. Chandra, J. J. Barnett, and M. Corney, “Zonal Mean Temperature, Pressure, Zonal Wind and Geopotential Height as Functions of Latitude,” Adv. Space Res., No. 12, 10 (1990).Google Scholar
  15. 15.
    J. Hansen, M. Sato, R. Ruedy, A. Lacis, and V. Oinas, “Global Warming in the Twenty-first Century: An Alternative Scenario,” Proc. Natl. Acad. Sci., 97 (2000).CrossRefGoogle Scholar
  16. 16.
    Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Cambridge Univ. Press, New York, 2007).Google Scholar
  17. 17.
    JRA-55—the Japanese 55-year Reanalysis; https://doi.org/jra.kishou.go.jp/JRA-55/index_en.html#news.
  18. 18.
    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetma, R. Reynolds, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-year Reanalysis Project,” Bull. Amer. Meteorol. Soc., 77 (1996).CrossRefGoogle Scholar
  19. 19.
    R. D. McPeters, P. K. Bharita, A. J. Krueger, and J. R. Herman, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide, NASA Reference Publication 1384 (1996).Google Scholar
  20. 20.
  21. 21.
    I. C. Prentice, G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Kheshgi, C. Le Qunrn, R. J. Scholes, D. W. R. Wallace, D. Archer, M. R. Ashmore, O. Aumont, D. Baker, M. Battle, M. Bender, L. P. Bopp, P. Bousquet, K. Caldeira, P. Ciais, P. M. Cox, W. Cramer, F. Dentener, I. G. Enting, C. B. Field, P. Friedlingstein, E. A. Holland, R. A. Houghton, J. I. House, A. Ishida, A. K. Jain, I. A. Janssens, F. Joos, T. Kaminski, C. D. Keeling, R. F. Keeling, D. W. Kicklighter, K. E. Kohfeld, W. Knorr, R. Law, T. Lenton, K. Lindsay, E. Maier-Reimer, A. C. Manning, R. J. Matear, A. D. McGuire, J. M. Melillo, R. Meyer, M. Mund, J. C. Orr, S. Piper, K. Plattner, P. J. Rayner, S. Sitch, R. Slater, S. Taguchi, P. P. Tans, H. Q. Tian, M. F. Weirig, T. Whorf, A. Yool, L. Pitelka, and A. Ramirez Rojas, “The Carbon Cycle and Atmospheric Carbon Dioxide,” in Third Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, Cambridge, UK, 2001).Google Scholar
  22. 22.
    K. Taylor, D. Williamson, and F. Zwiers, The Sea Surface Temperature and Sea-ice Concentration Boundary Conditions for AMIP II Simulations, PCMDI Report No. 60 (2000).Google Scholar
  23. 23.
    K. E. Taylor, D. Williamson, and F. Zwiers, The Sea Surface Temperature and Sea-ice Concentration Boundary Conditions for AMIP II Simulations. Program for Climate Model Diagnosis and Intercomparison (University of California, Lawrwnce Livermore National Laboratory, 2000).Google Scholar
  24. 24.
    Weather and Climate Change, https://doi.org/www.metoffice.gov.uk/.

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Russian State Hydrometeorological UniversitySt. PetersburgRussia

Personalised recommendations