Russian Meteorology and Hydrology

, Volume 44, Issue 5, pp 345–354 | Cite as

Assessing the Transport of Volcanic Aerosol in the Stratosphere over Tomsk and Vladivostok from Lidar Data

  • A. A. CheremisinEmail author
  • V. N. Marichev
  • P. V. Novikov
  • A. N. Pavlov
  • K. A. Shmirko
  • D. A. Bochkovskii


The transport of volcanic aerosol in the atmosphere after the eruptions of the Grimsvotn and Nabro volcanoes in 2011 is analyzed using the method of Lagrangian particle trajectories. It was impossible to identify volcanic aerosol after the Grimsvotn eruption using data of lidar observations over Tomsk and Vladivostok against the existing background aerosol. At that time there was strong horizontal mixing in the Northern Hemisphere atmosphere. Volcanic aerosol formed after the Nabro eruption was clearly manifested in the form of aerosol scattering peaks over Vladivostok and Tomsk. This is proved by data of the CALIPSO space lidar and by the satellite observations of sulfur dioxide with GOME-2. The dynamics of the eruptive aerosol cloud formation over the Northern Hemisphere is traced.


Volcanic aerosol lidar observations trajectory analysis Nabro volcano Grimsvotn volcano 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank UK Met Office and LANCE FIRMS (NASA/GSFC/ESDIS) for data provision.


  1. 1.
    Yu. S. Balin, A. G. Borovoi, V. D. Burlakov, S. I. Dolgii, M. G. Klemasheva, A. V. Konoshonkin, G. P. Kokhanenko, N. V. Kustova, V. N. Marichev, G. G. Matvienko, A. A. Nevzorov, A. V. Nevzorov, I. E. Penner, O. A. Romanovskii, S. V. Samoilova, A. Ya. Sukhanov, O. V. Kharchenko, and V. A. Shishko, Lidar Monitoring of Cloud and Aerosol Fields, Trace Gases, and Meteorological Parameters, Ed. by G. G. Matvienko (IOA, Tomsk, 2015) [in Russian].Google Scholar
  2. 2.
    S. I. Dolgii, V. D. Burlakov, A. P. Makeev, A. V. Nevzorov, K. A. Shmirko, A. N. Pavlov, S. Yu. Stolyarchuk, O. A. Bukin, A. P. Chaykovskii, F. P. Osipenko, and D. A. Trifonov, “Aerosol Disturbances in the Stratosphere after the Eruption of the Grimsvotn Volcano (Iceland, May 2011) According to Data of CIS-LiNet CIS Lidar Network Stations in Minsk, Tomsk, and Vladivostok,” Optika Atmosfery i Okeana, No. 7, 26 (2013) [in Russian].Google Scholar
  3. 3.
    A. V. El’nikov, G. M. Krekov, and V. N. Marichev, “Lidar Observations of Stratospheric Aerosol Layer over Western Siberia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 8, 24 (1988) [in Russian].Google Scholar
  4. 4.
    V. N. Marichev and I. V. Samokhvalov, “Lidar Observations of Aerosol Volcanic Layers in the Stratosphere of Western Siberia in 2008–2010,” Optika Atmosfery i Okeana, No. 3, 24 (2011) [in Russian].Google Scholar
  5. 5.
    I. V. Samokhvalov, Yu. D. Kopytin, I. I. Ippolitov, Yu. S. Valin, V. V. Zuev, V. M. Klimkin, S. V. Lazarev, G. G. Matvienko, V. M. Mitchenkov, A. V. Sosnin, G. S. Khmel’nitskii, V. S. Shamanaev, A. E. Dudel’zak, I. E. Naats, and V. S. Smirnov, Laser Sounding of the Troposphere and Underlying Surface, Ed. by V. E. Zuev (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar
  6. 6.
    A. A. Cheremisin, A. V. Kushnarenko, V. N. Marichev, S. V. Nikolashkin, and P. V. Novikov, “Meteorological Conditions and Potar Stratospheric Clouds over Yakutsk in Winter 2004/05,” Meteorol. Gidrol., No. 3 (2007) [Russ. Meteorol. Hydrol., No. 3, 32 (2007)].Google Scholar
  7. 7.
    A. A. Cheremisin, V. N. Marichev, and P. V. Novikov, “Lidar Observations of Volcanic Aerosol Content in the Atmosphere over Tomsk,” Meteorol. Gidrol., No. 9 (2011) [Russ. Meteorol. Hydrol., No. 9, 36 (2011)].Google Scholar
  8. 8.
    A. A. Cheremisin, V. N. Marichev, and P. V. Novikov, “Transport of Polar Stratospheric Clouds from the Arctic to Tomsk in January 2010,” Optika Atmosfery i Okeana, No. 2, 26 (2013) [Atmos. Ocean. Opt., No. 6, 26 (2013)].Google Scholar
  9. 9.
    A. A. Cheremisin, P. V. Novikov, I. S. Shnipov, V. V. Bychkov, and B. M. Shevtsov, “Lidar Observations and Formation Mechanism of the Structure of Stratospheric and Mesospheric Aerosol Layers over Kamchatka,” Geomagnetizm i Aeronomiya, No. 5, 52 (2015) [Geomagnetism and Aeronomy, No. 5, 52 (2015)].Google Scholar
  10. 10.
    A. Bourassa, A. Robock, W. Randel, T. Deshler, L. A. Rieger, N. D. Lloyd, E. J. Llewellyn, and D. A. Degenstein, “Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport,” Science, 337 (2012).Google Scholar
  11. 11.
    CALIPSO Science Team, CALIPSO/CALIOP Level 1B, Lidar Profile Data, Version 3.02 (NASA Atmospheric Science Data Center (ASDC), Hampton, VA, USA) (Accessed 10 March 2018).Google Scholar
  12. 12.
    A. A. Cheremisin, V. N. Marichev, P. V. Novikov, T. O. Barashkov, and D. A. Bochkovsky, “Analysis of Polar Stratospheric Cloud Observations at Tomsk in January 2016,” in Proceeding of SPIE, 22nd Intern. Symp. Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk (2016).Google Scholar
  13. 13.
    L. Clarisse, P.-F. Coheur, N. Theys, D. Hurtmans, and C. Clerbaux, “The 2011 Nabro Eruption, a SO2 Plume Height Analysis Using IASI Measurements,” Atmos. Chem. Phys., 14 (2014).Google Scholar
  14. 14.
    R. R. Draxler, HYSPLIT4 User’s Guide, NOAA Technical Memorandum ERL ARL-230 (1999).Google Scholar
  15. 15.
    T. D. Fairlie, J.-P. Vernier, M. Natarajan, and K. M. Bedka, “Dispersion of the Nabro Volcanic Plume and Its Relation to the Asian Summer Monsson,” Atmos. Chem. Phys., 14 (2014).Google Scholar
  16. 16.
    M. Fromm, G. Nedoluha, and Z. Charvat, “Comment on “Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport”, Science, 339 (2013).Google Scholar
  17. 17.
    GDAS: Global Data Assimilation System,
  18. 18.
    “Global Volcanism Program, 2011. Report on Nabro (Eritrea),” in Weekly Volcanic Activity Report, 8 June–14 June 2011, Ed. by S. K. Sennert (Smithsonian Institution and US Geological Survey),
  19. 19.
  20. 20.
    V. M. Kerminen, J. V. Niemi, H. Timonen, M. Aurela, A. Frey, S. Carbone, S. Saarikoski, K. Teinile, J. Hakkarainen, J. Tamminen, J. Vira, M. Prank, M. Sofiev, and R. Hillamo, “Characterization of a Volcanic Ash Episode in Southern Finland Caused by the Grimsvotn Eruption in Iceland in May 2011,” Atmos. Chem. Phys., 11 (2011).Google Scholar
  21. 21.
    S. M. Khaykin, S. Godin-Beekmann, P. Keckhut, A. Hauchecorne, J. Jumelet, J. Vernier, A. Bourassa, D. Degenstein, L. Rieger, C. Bingen, F. Vanhellemont, C. Robert, M. DeLand, and P. Bhartia, “Variability and Evolution of the Midlatitude Stratospheric Aerosol Budget from 22 Years of Ground-based Lidar and Satellite Observations,” Atmos. Chem. Phys., 17 (2017).Google Scholar
  22. 22.
    S. Kremser, L. W. Thomason, M. von Hobe, M. Hermann, T. Deshler, C. Timmreck, M. Toohey, A. Stenke, J. P. Schwarz, R. Weigel, S. Fueglistaler, F. J. Prata, J.-P. Vernier, H. Schlager, J. E. Barnes, J.-C. Antuea-Marrero, D. Fairlie, M. Palm, E. Mahieu, J. Notholt, M. Rex, C. Bingen, F. Vanhellemont, A. Bourassa, J. M. C. Plane, D. Klocke, S. A. Carn, L. Clarisse, T. Trickl, R. Neely, A. D. James, L. Rieger, J. C. Wilson, and B. Meland, “Stratospheric Aerosol—Observations, Processes, and Impact on Climate,” Rev. Geophys., No. 2, 54 (2016).Google Scholar
  23. 23.
    K. Kvietkus, J. Sakalys, J. Didzbalis, I. Garbariene, N. Spirkauskait, and V. Remeikis, “Atmospheric Aerosol Episodes over Lithuania after the May 2011 Volcano Eruption at Grimsvotn, Iceland,” Atmos. Res., 122 (2013).Google Scholar
  24. 24.
    London Volcanic Ash Advisory Centre (VAAC)—Issued Graphics,
  25. 25.
    Met Office Stratospheric Assimilated: Standard Assimilated Data from 1991 to Present. NCAS British Atmospheric Data Centre, 10 March 2018 (Met Office, 2007),
  26. 26.
    MODIS Collection 6 NRT Hotspot/Active Fire Detection MCD14DL,
  27. 27.
    NCEP Reanalysis Data;
  28. 28.
    P. Sawamura, J. P. Vernier, J. E. Barnes, T. A. Berkoff, E. J. Welton, L. Alados-Arboledas, F. Navas-Guzmen, G. Pappalardo, L. Mona, F. Madonna, D. Lange, M. Sicard, S. Godin-Beekmann, G. Payen, Z. Wang, S. Hu, S. N. Tripathi, C. Cordoba-Jabonero, and R. M. Hoff, “Stratospheric AOD after the 2011 Eruption of Nabro Volcano Measured by Lidars over the Northern Hemisphere,” Environ. Res. Lett., 7 (2012).Google Scholar
  29. 29.
    A. Stohl, “Computation, Accuracy and Applications of Trajectories—A Review and Bibliography,” Atmos. Environ., 32 (1998).Google Scholar
  30. 30.
    A. Stohl, C. Forster, A. Frank, P. Seibert, and G. Wotawa, “Technical Note: The Lagrangian Particle Dispersion Model FLEXPART Version 6.2,” Atmos. Chem. Phys., 5 (2005).Google Scholar
  31. 31.
    Support to Aviation Control Service,
  32. 32.
    N. Theys, R. Campion, L. Clarisse, H. Brenot, J. van Gent, B. Dils, S. Corradini, L. Merucci, P.-F. Coheur, M. van Roozendael, D. Hurtmans, C. Clerbaux, S. Tait, and F. Ferrucci, “Volcanic SO2 Fluxes Derived from Satellite Data: A Survey Using OMI, GOME-2, IASI and MODIS,” Atmos. Chem. Phys., 13 (2013).Google Scholar
  33. 33.
    J.-P. Vernier, L. W. Thomason, T. D. Fairlie, P. Minnis, R. Palikonda, and K. M. Bedka, “Comment on “Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport”, Science, 339 (2013).Google Scholar
  34. 34.
    J. Zhuang and F. Yi, “Aerosol Evolution Observed Jointly by Lidars at a Mid-latitude Site and CALIPSO,” Atmos. Environ., 140 (2016).Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. A. Cheremisin
    • 1
    • 2
    Email author
  • V. N. Marichev
    • 3
  • P. V. Novikov
    • 2
  • A. N. Pavlov
    • 4
    • 5
  • K. A. Shmirko
    • 4
    • 5
  • D. A. Bochkovskii
    • 3
  1. 1.Voevodsky Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Krasnoyarsk Rail Transport InstituteKrasnoyarskRussia
  3. 3.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  4. 4.Institute of Automation and Control Processes, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  5. 5.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations