Russian Meteorology and Hydrology

, Volume 44, Issue 5, pp 317–325 | Cite as

Variations in Surface Concentration of Fine Particulate Matter in Central Regions of the European Part of Russia

  • I. B. Konovalov
  • I. N. KuznetsovaEmail author
  • D. A. L’vova
  • I. Yu. Shalygina
  • M. Beekmann


The model estimation is presented for the impact of interaction between anthropogenic and biogenic emissions of trace gases and aerosols on the mass concentration of the fine fraction of particulate matter (PM2.5) in the central region of the European part of Russia. The numerical study is performed with the CHIMERE chemistry transport model taking into account the formation of secondary organic aerosol from the oxidation of semivolatile organic compounds. The simulation results are in agreement with data of PM2.5 measurements at the Mosekomonitoring stations in Moscow. It is shown that the anthropogenic-biogenic interaction results in the growth of PM2.5 concentration. Its relative value varies within the analyzed region from several percent to several tens of percent and leads to the considerable (by 1.5 times) increase in the number of episodes in which average daily PM2.5 concentration exceeds the maximum permissible concentration accepted in Russia. It is found that the revealed increase in the number of such episodes is mainly caused by the accelerated formation of biogenic secondary organic aerosol in the presence of anthropogenic air pollution which accounts (on average over the region and season) for ∼60% of its surface mass concentration.


Particulate matter secondary organic aerosol chemistry transport model biogenic aerosol semivolatile organic compounds air quality forecasting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. B. Konovalov, N. F. Elanskii, A. M. Zvyagintsev, I. B. Belikov, and M. Beekmann, “Validation of Chemistry Transport Model of the Lower Atmosphere in the Central European Region of Russia Using Ground-based and Satellite Measurement Data,” Meteorol. Gidrol., No. 4 (2009) [Russ. Meteorol. Hydrol., No. 4, 34 (2009)].Google Scholar
  2. 2.
    I. N. Kuznetsova, I. B. Konovalov, A. A. Glazkova, E. V. Berezin, M. Beekmann, and E.-D. Schulze, “Estimation of Transboundary Transport Contribution to the Air Pollution in the Far East Region Using the Chemistry Transport Model,” Meteorol. Gidrol., No. 3 (2013) [Russ. Meteorol. Hydrol., No. 3, 38 (2013)].Google Scholar
  3. 3.
    I. N. Kuznetsova, I. B. Konovalov, A. A. Glazkova, M. I. Nakhaev, R. B. Zaripov, E. A. Lezina, A. M. Zvyagintsev, and M. Beekmann, “Observed and Calculated Variability of the Particulate Matter Concentration in Moscow and in Zelenograd,” Meteorol. Gidrol., No. 3 (2011) [Russ. Meteorol. Hydrol., No. 3, 36 (2011)].Google Scholar
  4. 4.
    Maximum Permissible Concentrations (MPC) of Pollutants in Air over Populated Areas. Annex 8 to GN–03 (Rospotrebnadzor, Moscow, 2010) [in Russian].Google Scholar
  5. 5.
    I. Yu. Shalygina, M. I. Nakhaev, I. N. Kuznetsova, E. V. Berezin, I. B. Konovalov, D. V. Blinov, and A. A. Kirsanov, “Comparison of Surface Concentration of Polluting Substances Calculated by Chemistry Transport Models with Measurement Data for the Moscow Region,” Optika Atmosfery i Okeana, No. 1, 30 (2017).Google Scholar
  6. 6.
    R. Ahmadov, S. McKeen, A. Robinson, R. Bahreini, A. M. Middlebrook, J. A. de Gouw, J. Meagher, E.-Y. Hsie, E. Edgerton, and S. Shaw, “A Volatility Basis Set Model for Summertime Secondary Organic Aerosols over the Eastern United States in 2006,” J. Geophys. Res., 117 (2012).Google Scholar
  7. 7.
    E. Athanasopoulou, H. Vogel, B. Vogel, A. Tsimpidi, S. N. Pandis, C. Knote, and C. Fountoukis, “Modeling the Meteorological and Chemical Effects of Secondary Organic Aerosols during an EUCAARI Campaign,” Atmos. Chem. Phys., 13 (2013).Google Scholar
  8. 8.
    O. Boucher and D. Randall, “Clouds and Aerosols,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, New York, 2013).Google Scholar
  9. 9.
    A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. Palmer, and C. Geron, “Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature),” Atmos. Chem. Phys., 6 (2006).Google Scholar
  10. 10.
    A. Hodzic, J. L. Jimenez, S. Madronich, M. R. Canagaratna, P. F. DeCarlo, L. Kleinman, and J. Fast, “Modeling Organic Aerosols in a Megacity: Potential Contribution of Semi-volatile and Intermediate Volatility Primary Organic Compounds to Secondary Organic Aerosol Formation,” Atmos. Chem. Phys., 10 (2010).Google Scholar
  11. 11.
    C. Hoyle, R. Boy, M. Donahue, J. L. Fry, M. Glasius, A. Guenther, A. G. Hallar, K. H. Hartz, M. D. Petters, T. Petaja, T. Rosenoern, and A. P. Sullivan, “A Review of the Anthropogenic Influence on Biogenic Secondary Organic Aerosol,” Atmos. Chem. Phys., 11 (2011).Google Scholar
  12. 12.
    J. Kirkby, J. Duplissy, K. Sengupta, C. Frege, H. Gordon, C. Williamson, M. Heinritzi, M. Simon, C. Yan, J. Almeida, J. Trostl, T. Nieminen, I. K. Ortega, R. Wagner, A. Adamov, A. Amorim, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, S. Brilke, X. Chen, J. Craven, A. Dias, S. Ehrhart, R. C. Flagan, A. Franchin, C. Fuchs, R. Guida, J. Hakala, C. R. Hoyle, T. Jokinen, H. Junninen, J. Kangasluoma, J. Kim, M. Krapf, A. Kurten, A. Laaksonen, K. Lehtipalo, V. Makhmutov, S. Mathot, U. Molteni, A. Onnela, O. Perakyla, F. Piel, T. Petaja, A. P. Praplan, K. Pringle, A. Rap, N. A. D. Richards, I. Riipinen, M. P. Rissanen, L. Rondo, N. Sarnela, S. Schobesberger, C. E. Scott, J. H. Seinfeld, M. Sipila, G. Steiner, Y. Stozhkov, F. Stratmann, A. Tome, A. Virtanen, A. L. Vogel, A. C. Wagner, P. E. Wagner, E. Weingartner, D. Wimmer, P. M. Winkler, P. Ye, X. Zhang, A. Hansel, J. Dommen, N. M. Donahue, D. R. Worsnop, U. Baltensperger, M. Kulmala, K. S. Carslaw, and J. Curtius, “Ion-induced Nucleation of Pure Biogenic Particles,” Nature, No. 7604, 533 (2016).Google Scholar
  13. 13.
    I. B. Konovalov, M. Beekmann, E. V. Berezin, P. Formenti, and M. O. Andreae, “Probing into the Aging Dynamics of Biomass Burning Aerosol by Using Satellite Measurements of Aerosol Optical Depth and Carbon Monoxide,” Atmos. Chem. Phys., 17 (2017).Google Scholar
  14. 14.
    I. B. Konovalov, M. Beekmann, E. V. Berezin, H. Petetin, T. Mielonen, I. N. Kuznetsova, and M. O. Andreae, “The Role of Semi-volatile Organic Compounds in the Mesoscale Evotution of Biomass Burning Aerosol: A Modeling Case Study of the 2010 Mega-fire Event in Russia,” Atmos. Chem. Phys., 15 (2015).Google Scholar
  15. 15.
    I. B. Konovalov, M. Beekmann, B. d’Anna, and C. George, “Significant Light Induced Ozone Loss on Biomass Burning Aerosol: Evidence from Chemistry-transport Modeling Based on New Laboratory Studies,” Geophys. Res. Lett., 39 (2012).Google Scholar
  16. 16.
    M. A. Martinez, P. Caballero, O. Carrillo, A. Mendoza, and G. M. Mejia, “Chemical Characterization and Factor Analysis of PM2.5 in Two Sites of Monterrey, Mexico,” J. Air & Waste Management Association, No. 7, 62 (2012).Google Scholar
  17. 17.
    H. Matsui and M. Koike, “Enhancement of Aerosol Responses to Changes in Emissions over East Asia by Gas-oxidant-aerosol Coupling and Detailed Aerosol Processes,” J. Geophys. Res. Atmos., 121 (2016).Google Scholar
  18. 18.
    H. Matsui, M. Koike, Y. Kondo, N. Takegawa, A. Wiedensohler, J. D. Fast, and R. A. Zaveri, “Volatility Basis-set Approach Simutation of Organic Aerosol Formation in East Asia: Implications for Anthropogenic-biogenic Interaction and Controllable Amounts,” Atmos. Chem. Phys., 14 (2014).Google Scholar
  19. 19.
    L. Menut, B. Bessagnet, D. Khvorostyanov, M. Beekmann, N. Blond, A. Colette, I. Coll, G. Curci, G. Foret, A. Hodzic, S. Mailler, F. Meleux, J.-L. Monge, I. Pison, G. Siour, S. Turquety, M. Valari, R. Vautard, and M. G. Vivanco, “CHIMERE 2013: A Model for Regional Atmospheric Composition Modeling,” Geosci. Model Dev., 6 (2013).Google Scholar
  20. 20.
    B. N. Murphy and S. N. Pandis, “Simulating the Formation of Semivolatile Primary and Secondary Organic Aerosol in a Regional Chemical Transport Model,” Environ. Sci. Technol., 43 (2009).Google Scholar
  21. 21.
    A. Nenes, C. Pilinis, and S. Pandis, “ISORROPIA: A New Thermodynamic Model for Inorganic Multicomponent Atmospheric Aerosols,” Aquatic Geochem., 4 (1998).Google Scholar
  22. 22.
    A. L. Robinson, N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis, “Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging,” Science, 315 (2007).Google Scholar
  23. 23.
    J. Schwartz, “Air Pollution and Hospital Admissions for Respiratory Disease,” Epidemiology, 7 (1996).Google Scholar
  24. 24.
    J. G. Slowik, C. Stroud, J. W. Bottenheim, P. C. Brickell, R. Y.-W. Chang, J. Liggio, P. A. Makar, R. V. Martin, M. D. Moran, N. C. Shantz, S. J. Sjostedt, A. van Donkelaar, A. Vlasenko, H. A. Wiebe, A. G. Xia, J. Zhang, W. R. Leaitch, and J. P. D Abbatt, “Characterization of a Large Biogenic Secondary Organic Aerosol Event from Eastern Canadian Forests,” Atmos. Chem. Phys., 10 (2010).Google Scholar
  25. 25.
    D. V. Spracklen, J. L. Jimenez, K. S. Carslaw, D. R. Worsnop, M. J. Evans, G. W. Mann, Q. Zhang, M. R. Canagaratna, J. Allan, H. Coe, G. McFiggans, A. Rap, and P. Forster, “Aerosol Mass Spectrometer constraint on the Global Secondary Organic Aerosol Budget,” Atmos. Chem. Phys., 11 (2011).Google Scholar
  26. 26.
    WHO, 2006. Air Quality Guidelines: Global Update 2005. Particular Matler, Ozone, Nitrogen Dioxide and Sulfur Dioxide (WHO, Geneva, 2006).Google Scholar
  27. 27.
    Q. J. Zhang, M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, V. Gros, A. Borbon, A. Colomb, V. Michoud, J.-F. Doussin, H. A. C. Deier van der Gon, M. Haeffelin, J.-C. Dupont, G. Siour, H. Petetin, B. Bessagnet, S. N. Pandis, A. Hodzic, O. Sanchez, C. Honore, and O. Perrussel, “Formation of Organic Aerosol in the Paris Region during the MEGAPOLI Summer Campaign: Evaluation of the Volatility-basis-set Approach within the CHIMERE Model,” Atmos. Chem. Phys., 13 (2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • I. B. Konovalov
    • 1
  • I. N. Kuznetsova
    • 2
    Email author
  • D. A. L’vova
    • 1
  • I. Yu. Shalygina
    • 2
  • M. Beekmann
    • 3
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Hydrometeorological Research Center of the Russian FederationMoscowRussia
  3. 3.Laboratoire Interuniversitaire des Systemes AtmospheriquesCreteil CedexFrance

Personalised recommendations