Advertisement

Russian Meteorology and Hydrology

, Volume 44, Issue 5, pp 311–316 | Cite as

Modeling the Junge Layer Formation in Northern Latitudes: Spatiotemporal Structure and Particle Composition

  • A. E. AloyanEmail author
  • V. O. Arutyunyan
  • A. N. Ermakov
Article

Abstract

The study presents the results of 3D modeling of the spatiotemporal structure of the atmospheric distribution of gaseous pollutants and Junge layer particles carried out for the winter of 2002. The study presents the results of numerical simulation of their number concentration and mass concentration, spectral and vertical distribution, and variability of the content of water and sulfuric and nitric acids in the particles. The calculations reveal that the key factor determining the spatiotemporal structure of the Junge layer is the atmospheric distribution of temperature and relative humidity. Calculated and observed data on the Jungle layer are compared.

Keywords

Sulfate aerosol Junge layer spatiotemporal structure chemical composition of particles photochemical processes nucleation condensation coagulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Aloyan, A. N. Ermakov, and V. O. Arutyunyan, “Aerosols in the Troposphere and Lower Stratosphere. Sulfate Particles in Northern Latitudes,” Optika Atmosfery i Okeana, No. 2, 31 (2018) [in Russian].Google Scholar
  2. 2.
    A. E. Aloyan, A. N. Ermakov, and V. O. Arutyunyan, “Sulfate Aerosol Formation in the Troposphere and Lower Stratosphere,” in The Investigation of Possible Stabilization of Climate Using New Technologies (Roshydromet, Moscow, 2012) [in Russian].Google Scholar
  3. 3.
    A. E. Aloyan and V. N. Piskunov, “Modeling the Regional Dynamics of Gaseous Admixtures and Aerosols,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 41 (2005) [Izv., Atmos. Oceanic Phys., No. 3, 41 (2005)].Google Scholar
  4. 4.
    A. E. Aloyan, “Mathematical Modeling of the Interaction of Gas Species and Aerosols in Atmospheric Dispersive Systems,” Russ. J. Num. Anal. Math. Model, No. 1–4, 15 (2000).Google Scholar
  5. 5.
    A. E. Aloyan, V. O. Arutyunyan, A. A. Lushnikov, and V. A. Zagainov, “Transport of Coagulating Aerosol in the Atmosphere,” J. Aeros. Sci., No. 1, 28 (1997).Google Scholar
  6. 6.
    J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, and B. L. Gary, “Particle Size Distributions in Arctic Polar Stratospheric Clouds, Growth and Freezing of Sulfuric Acid Droplets, and Implications for Cloud Formation,” J. Geophys. Res., No. 8, 97 (1992).Google Scholar
  7. 7.
    S. Godin, L. R. Poole, S. Bekki, T. Deshler, N. Larsen, and T. Peter, “Global Distributions and Changes in Stratospheric Particles,” in Scientific Assessment of Ozone Depletion: 1998, World Meteorological Organization Global Ozone Research and Monitoring Project Report 44, Chapter 3 (Geneva, Switzerland, 1999).Google Scholar
  8. 8.
    D. J. Hofmann, “Measurement of the Concentration Nuclei Profile to 31 km in the Arctic in January and Comparison with Antarctic Measurements,” Geophys. Res. Lett., No. 4, 17 (1990).Google Scholar
  9. 9.
    C. E. Junge, C. W. Chagnon, and J. E. Manson, “Stratospheric Aerosols,” J. Meteorol., 18 (1961).Google Scholar
  10. 10.
    Y. Kurihara and R. E. Televa, “Structure of Tropical Cyclone Developed in Three-dimensional Numerical Simulation Model,” J. Atmos. Sci., No. 5, 31 (1974).Google Scholar
  11. 11.
    V. B. Lapshin, M. Y. Yablokov, and A. A. Palei, “Vapor Pressure over a Charged Drop,” Russ. J. Phys. Chem., No. 10, 76 (2002).Google Scholar
  12. 12.
    D. Lowe and R. MacKenzie, “Review of Potar Stratospheric Cloud Microphysics and Chemtstry,” J. Atmos. Sol.-Terr. Phys., No. 1, 70 (2008).Google Scholar
  13. 13.
    B. Luo, K. S. Carslaw, N. Peter, and S. L. Cleg, “Vapor Pressures of H2SO4/HNO3/HCl/HBr/H2O/Solutions to Low Stratospheric Temperatures,” Geophys. Res. Lett., No. 3, 22 (1995).Google Scholar
  14. 14.
    S. K. Melinger, T. Koop, B. P. Luo, T. Huthwelker, K. S. Carslaw, U. Krieger, P. J. Crutzen, and T. Pet er, “Size-dependent Stratospheric Droplet Composition in Lee Wave Temperature Fluctuations and Their Potential Role in PSC Freezing,” Geophys. Res. Lett., 22 (1995).Google Scholar
  15. 15.
    J. R. Pierce and P. J. Adams, “Can Cosmic Rays Affect Cloud Condensation Nuclei by Altering New Particle Formation Rates?”, Geophys. Res. Lett., 36 (2009).Google Scholar
  16. 16.
    V. N. Piskunov, A. I. Golubev, E. A. Goncharov, and N. A. Ismailova, “Kinetic Modeling of Composite Particles Coagulation,” J. Aerosol Sci., 28 (1997).Google Scholar
  17. 17.
    Q. Shi, J. T. Jayne, C. E. Kolb, and D. R. Worsnop, “Kinetic Model for Reaction of ClONO2 with H2O and HCl and HOCl with HCl in Sulfuric Acid Solutions,” J. Geophys. Res., No. D20, 106 (2001).Google Scholar
  18. 18.
    H. Vehkamaki, M. Kulmala, I. Napari, K. E. J. Lehtinen, C. Timmreck, M. Noppel, and A. Laaksonen, “An Improved Parameterization for Sulfuric Acid/Water Nucleation Rates for Tropospheric and Stratospheric Conditions,” J. Geophys. Res., No. D22, 107 (2002).Google Scholar
  19. 19.
    G. Wilemski, “Composition of the Critical Nucleus in Multicomponent Vapor Nucleation,” J. Chem. Phys., 80 (1984).Google Scholar
  20. 20.
    F. Yu, G. Luo, T. S. Bates, B. Anderson, A. Clarke, V. Kapustin, R. M. Yantosca, Y. Wang, and Sh. Wu, “Spatial Distributions of Particle Number Concentrations in the Global Troposphere: Simulations, Observations, and Implications for Nucleation Mechanisms,” J. Geophys. Res., 115 (2010).Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. E. Aloyan
    • 1
    Email author
  • V. O. Arutyunyan
    • 1
  • A. N. Ermakov
    • 2
  1. 1.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Talrose Institute for Energy Problems of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations