Russian Meteorology and Hydrology

, Volume 44, Issue 1, pp 33–44 | Cite as

Large-scale Ocean Circulation and Sea Ice Characteristics Derived from Numerical Experiments with the NEMO Model

  • V. N. Stepanov
  • Yu. D. ResnyanskiiEmail author
  • B. S. Strukov
  • A. A. Zelenko


The results of numerical experiments on setting the NEMO model during its preparation for the assimilation of oceanographic data are presented. The modeling of ocean circulation and sea ice characteristics is performed with two different configurations of NEMO with a 1° horizontal resolution and with two versions of the sea ice model LIM2 and LIM3. The sensitivity of simulation results to the variations in the vertical resolution of the model grid and to the selection of the methods for describing ice processes is studied. It is shown that the increased vertical resolution and the calculations with several ice thickness gradations lead to a better agreement between model simulations and observations. The model configuration used for simulations with the corresponding setting parameters is suitable for its inclusion to the ocean data assimilation system.


NEMO model LIM2 and LIM3 sea ice models numerical experiment parameters setting vertical resolution Atlantic meridional overturning circulation ice concentration ice volume seasonal variations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Zelenko, R. M. Vil’fand, Yu. D. Resnyanskii, B. S. Strukov, M. D. Tsyrulnikov and P. I. Svirenko, “An Ocean Data Assimilation System and Re analysis of the World Ocean Hydrophysical Fields,” Izv. Akad. Nauk. Fiz. Atmos. Okeana, No. 4, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 4, 52 (2016)].Google Scholar
  2. 2.
    A. A. Zelenko and Yu. D. Resnyanskii, “Deep Convection in the Ocean General Circulation Model: Variability on the Diurnal, Seasonal, and Interannual Time Scales,” Okeanologiya, No. 2, 47 (2007) [Oceanology, No. 2, 47 (2007)].Google Scholar
  3. 3.
    A. A. Zelenko, Yu. D. Resnyanskii, M. D. Tsyrul’nikov, B. S. Strukov, and P. I. Svirenko, “The Global Ocean Data Assimilation System: A Pilot Version,” in Proceedings of VI Russian Research and Development Conference “Modern State and Problems of Navigation and Oceanography (N0–2007), May 23–25, 2007 (St. Petersburg, 2007) [in Russian].Google Scholar
  4. 4.
    A. A. Zelenko, Yu. D. Resnyanskii, M. D. Tsyrul’nikov, B. S. Strukov, and P. I. Svirenko, “Monitoring of Large–scale Structure of Ocean Hydrophysical Fields,” in Modern Problems of Ocean and Atmosphere Dynamics(Triada LTD, Moscow, 2010) [in Russian].Google Scholar
  5. 5.
    A. N. Kolmogorov, “Equations of Turbulent Motion of Incompressible Fluid,” Izv. AN SSSR, Ser. Fiz., No. 1–2, 6 (1942) [in Russian].Google Scholar
  6. 6.
    A. I. Mizyuk, G. K. Korotaev, and Yu. B. Ratner, “Adaptation of the NEMO Model to the Forecasting in the Black Sea,” in Proceedings ofInternational Scientific Conference “Status and Future of Sea Resources Capacity Building in Southern Russia,” Katsiveli, September 15–18, 2014 (Sevastopol, 2014) [in Russian].Google Scholar
  7. 7.
    O. S. Puzina and A. I. Mizyuk, “Comparison of Parameterizations of Vertical Turbulent Mixing for Simulating the Black Sea Circulation,” in Proceedings of Scientific Conference “The Russian Seas: Science, Security, and Resources,” Sevastopol, October 3–7, 2017.Google Scholar
  8. 8.
    M. V. Senderov, A. I. Mizyuk, and G. K. Korotaev, “Influence of Initial Conditions on the Vertical Distribution of Salinity in the Black Sea in the “World Creation” Problem,” in Proceedings of Scientific Conference “The World Ocean: Models, Data, and Operational Oceanology,” Sevastopol, September 26–30, 2016.Google Scholar
  9. 9.
    L. Brodeau, B. Barnier, A.–M. Treguier, T. Penduff, and S. Gulev, “An ERA40–based Atmospheric Forcing for Global Ocean Circulation Models,” Ocean Modelling, 31 (2010).Google Scholar
  10. 10.
    A. Dai and K. E. Trenberth, “Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations,” J. Hydrometeorol., 3 (2002).Google Scholar
  11. 11.
    D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hylm, L. Isaksen, P. Kellberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge–Sanz, J.–J. Morcrette, B.–K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.–N. Thepaut, and F. Vitart, “The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., No. 656, 137 (2011).Google Scholar
  12. 12.
    S. Dong, S. L. Garzoli, M. O. Baringer, C. S. Meinen, and G. J. Goni, “Interannual Variations in the Atlantic Meridional Overturning Circulation and Its Relationship with the Net Northward Heat Transport in the South Atlantic,” Geophys. Res. Lett., 36 (2009).Google Scholar
  13. 13.
    S. Dong, G. Goni, and F. Bringas, “Temporal Variability of the South Atlantic Meridional Overturning Circulation between 20° S and 35° S,” Geophys. Res. Lett., 42 (2015).Google Scholar
  14. 14.
    K. A. Donohue, K. L. Tracey, D. R. Watts, M. P. Chidichimo, and T. K. Chereskin, “Mean Antarctic Circumpolar Current Transport Measured in Drake Passage,” Geophys. Res. Lett., No. 11, 43 (2016).Google Scholar
  15. 15.
    K. Doos and D. J. Webb, “The Deacon Cell and the Other Meridional Cells of the Southern Ocean,” J. Phys. Oceanogr., 24 (1994).Google Scholar
  16. 16.
    R. Dussin, B. Barnier, L. Brodeau, and J.–M. Molines, The Making of the DRAKKAR Forcing Set DFS5, DRAKKAR/MyOcean Report 01–04–16. April 2016, https://www.drakkar– DFS5v3_April2016.pdf.Google Scholar
  17. 17.
    A. Ganachaud and C. Wunsch, “Large Scale Ocean Heat and Freshwater Transports during the World Ocean Circulation Experiment, ” J. Climate, 16 (2003).Google Scholar
  18. 18.
    P. R. Gent and J. C. McWilliams, “Isopycnal Mixing in Ocean Circulation Models, ” J. Phys. Oceanogr., No. 1, 20 (1990).Google Scholar
  19. 19.
    S. T. Gille, “Float Observations of the Southern Ocean. Part I: Estimating Mean Fields, Bottom Velocities, and Topographic Steering, ” J. Phys. Oceanogr., No. 6, 33 (2003).Google Scholar
  20. 20.
    W. R. Hobbs and J. K. Willis, “Midlatitude North Atlantic Heat Transport: A Time Series Based on Satellite and Drifter Data, ” J. Geophys. Res. Oceans, 117 (2012).Google Scholar
  21. 21.
    IOC, SCOR and IAPSO. The International Thermodynamic Equation of Seawater. Calculation and Use of Thermodynamic Properties, International Oceanographic Commission, Manuals and Guides No. 56 (UNESCO, 2010).Google Scholar
  22. 22.
    D. Iovino, S. Masina, A. Storto, A. Cipollone, and V. Stepanov, “A 1/16° Eddying Simul ation of the Gobal NEMO Sea Ice–Ocean System, ” Geosci. Model Dev., 9 (2016).Google Scholar
  23. 23.
    W. G. Lerge and S. G. Yeager, Diurnal to Decadal Global Forcingfor Ocean and Sea Ice Models: The Data Sets and Flux Climatologies, Technical Report TN–460+STR (NCAR, 2004).Google Scholar
  24. 24.
    R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, C. R. Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, and D. Seidov, World Ocean Atlas 2013, Vol. 1: Temperature, Ed. by S. Levitus (NOAA Atlas NESDIS 73, 2013).Google Scholar
  25. 25.
    G. Madec and the NEMO Team, NEMO Ocean Engine. Note du Pole de Modelisation, No. 27 (Institut Pierre–Simon Laplace (IPSL), France, 2008).Google Scholar
  26. 26.
    J. Marshall, H. Johnson, and J. Goodman, “A Study of the Int eraction of the North Atl antic Oscil l ation with Ocean Circulation, ” J. Climate, 14 (2001).Google Scholar
  27. 27.
    M. J. Martin, M. Balmaseda, L. Bertino, P. Brasseur, G. Brassington, J. Cummings, Y. Fujii, D. J. Lea, J.–M. Lellouche, K. Mogensen, P. R. Oke, G. C. Smith, C.–E. Testut, G. A. Waagbo, J. Waters, and A. T. Weaver, “Status and Future of Data Assimilation in Operational Oceanography, ” J. Operational Oceanogr., No. S1, 8 (2015).Google Scholar
  28. 28.
    G. D. McCarthy, D. A. Smeed, W. E. Johns, E. Frajka–Williams, B. I. Moat, D. Rayner, M. O. Baringer, C. S. Meinen, J. Collins, and H. L. Bryden, “Measuring the Atlantic Meridional Overturning Circulation at 26° N, ” Progr. Oceanogr., 130 (2015).Google Scholar
  29. 29.
    W. Meier, F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve, NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 2 (National Snow and Ice Data Center, Boulder, Colorado, USA, 2013, updated 2016).Google Scholar
  30. 30.
    C. Rousset, M. Vancoppenolle, G. Madec, T. Fichefet, S. Flavoni, A. Barthelemy, R. Benshila, J. Chanut, C. Levy, S. Masson, and F. Vivier, “The Louvain–la–Neuve Sea Ice Model LIM3.6: Global and Regional Geosci. Model Dev., 8 (2015).Google Scholar
  31. 31.
    A. Schweiger, R. Linsay, J. Zhang, M. Steele, H. Stern, and R. Kwok, “Uncertainty in Modeled Arctic Sea Ice Volume, ” J. Geophys. Res., 116 (2011).Google Scholar
  32. 32.
    V. Stepanov, D. Iovino, A. Storto, S. Masina, and A. Cipollone, “The Impact of Horizontal Resolution of Density Field on the Calculation of the Atlantic Meridional Overturning Circulation at 34° S, ” J. Geophys. Res. Oceans, 121 (2016).Google Scholar
  33. 33.
    V. N. Stepanov and K. Haines, “Mechanisms of AMOC Variability Simulated by NEMO Model, ” Ocean Sci., 10 (2014).Google Scholar
  34. 34.
    R. Timmermann, H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Duliere, “On the Representation of High Latitude Processes in the ORCA–LIM Global Coupled Sea Ice–Ocean Model, ” Ocean Modelling, 8 (2005).Google Scholar
  35. 35.
    P. Uotila, D. Iovino, M. Vancoppenolle, M. Lensu, and C. Rousset, “Comparing Sea Ice, Hydrography and Circulation between NEMO3.6 LIM3 and LIM2, ” Geosci. Model Dev., 10 (2017).Google Scholar
  36. 36.
    M. Vancoppenolle, T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M. A. M. Maqueda, “Simulating the Mass Balance and Salinity of Arctic and Antarctic Sea Ice. 1. Model Description and Validation, ” Ocean Modelling, 27 (2009).Google Scholar
  37. 37.
    M. Visbeck, E. Chassignet, R. Curry, T. Delworth, B. Dickson, and G. Krahmann, “The Ocean’s Response to North Atlantic Oscillation Variability, ” in The North Atlantic Oscillation: Kinematic Significance and Environmental Impact (Amer. Geophys. Union, 2003).Google Scholar
  38. 38.
    R. A. Woodgate, T. J. Weingartner, and R. Lindsay, “Observed Increases in Bering Strait Oceanic Fluxes from the Pacific to the Arctic from 2001 to 2011 and Their Impacts on the Arctic Ocean Water Column, ” Geophys. Res. Lett., 39 (2012).Google Scholar
  39. 39.
    Y. Zheng and B. S. Giese, “Ocean Heat Transport in Simple Ocean Data AssimHation: Structure and Mechanisms, ” J. Geophys. Res. Oceans, 114 (2009).Google Scholar
  40. 40.
    M. M. Zweng, J. R. Reagan, J. I. Antonov, R. A. Locarnini, A. V. Mishonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, D. R. Johnson, D. Seidov, and M. M. Biddle, World Ocean Atlas 2013, Vol. 2: Salin ity, Ed. by S. Levitus (NOAA Atlas NESDIS 74, 2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • V. N. Stepanov
    • 1
    • 2
  • Yu. D. Resnyanskii
    • 1
    Email author
  • B. S. Strukov
    • 1
  • A. A. Zelenko
    • 1
  1. 1.Hydrometeorological Research Center of the Russian FederationMoscowRussia
  2. 2.University of ReadingReadingUK

Personalised recommendations