Advertisement

Russian Meteorology and Hydrology

, Volume 44, Issue 1, pp 13–22 | Cite as

Climate Version of the SL-AV Global Atmospheric Model: Development and Preliminary Results

  • R. Yu. FadeevEmail author
  • M. A. Tolstykh
  • E. M. Volodin
Article
  • 2 Downloads

Abstract

Seasonal prediction and climate change modeling are carried out on the basis of the programs incorporating the global model of the atmosphere, ocean model, sea ice and land models, etc. Each component of a coupled model has to provide a fairly complete representation of the physical processes in the appropriate medium, while the other components are replaced by reanalysis data. In this paper we present the results of a study aimed at improving the quality of the climate simulation with the SL-AV global atmospheric model where both ocean sur face temperature and ice concentration are prescribed. We also discuss some probtems in tuning the parameterizations of subgrid-scale physical processes and their modifications.

Keywords

Global atmospheric model long-term forecast climate change modeling parameterization of subgrid-scale physical processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Volodin, “On the Nature of Some Super–extreme Summer Temperature Anomalies,” in Collection of Reports of the Joint Meeting of the Presidium of the Scientific Technical Council of Roshydromet and the Scientific Council of the Russian Academy of Sciences “Research on the Theory of Earth Climate ” (Moscow, 2011) [in Russian].Google Scholar
  2. 2.
    E. M. Volodin and V. N. Lykosov, “Parameterization of Heat and Moisture Processes in Soil–Vegetation System. 1. Description and Calculations Using Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4. 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].Google Scholar
  3. 3.
    E. M. Volodin, E. V. Mortikov, S. V. Kostrykin et al., “Reproduction of the Modern Climate with the INMCM5.0 Climate System Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 53 (2017) [Izv., Atmos. Oceanic Phys., No. 2, 53 (2017)].Google Scholar
  4. 4.
    R. A. Ibraev, R. N. Khabeyev, and K. V. Ushakov, “Eddy–resolution 1/10° Model of the World Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].Google Scholar
  5. 5.
    V. P. Meleshko, V. A. Matugin, P. V. Sporyshev, et al., “Model of General Circulation of Atmosphere of GGO (version MGO–03 T63L25),” Trudy GGO, No. 571 (2014).Google Scholar
  6. 6.
    V. M. Mirvis, V. P. Meleshko, T. Yu. Lvova, et al., “Prognostic Experiments Based on the GGO Ocean–Atmosphere Joint Model,” Trudy GGO, No. 583 (2016).Google Scholar
  7. 7.
    M. A. Tolstykh, J.–F. Geleyn, E. M. Volodin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, S. V. Kostrykin, V. G. Mizyak, R. Yu. Fadeev, V. V. Shashkin, A. V. Shlyaeva, I. N. Ezau, and A. Yu. Yurova, “Development of the Multiscale Version of the SL–AV Global Atmosphere Model,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].Google Scholar
  8. 8.
    M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, G. S. Goyman, R. B. Zaripov, D. B. Kiktev, S. V. Makhnorylova, V. G. Mizyak, and V. S. Rogutov, “Multiscale Global Atmosphere Model SL–AV: The Results of Medium–range Weather Forecasts,” Meteorol. Gidrol., No. 11 (2018) [Russ. Meteorol. Hydrol., No. 11, 43 (2018)].Google Scholar
  9. 9.
    M. A. Tolstykh, V. V. Shashkin, R. Yu. Fadeev, A. V. Shlyaeva, V. G. Mizyak, V. S. Rogutov, N. N. Bogoslovskii, G. S. Goyman, S. V. Makhnorylova, and A. Yu. Yurova, Atmosphere Modelling System for Seamless Prediction (Triada Ltd, Moscow, 2017) [in Russian].Google Scholar
  10. 10.
    N. P. Shakina and A. R. Ivanova, “Blocking Anticyclones: Current State of Research and Forecasting,” Meteorol. Gidrol., No. 11 (2010) [Russ. Meteorol. Hydrol., No. 11, 35 (2010)].Google Scholar
  11. 11.
    V. V. Shashkin, M. A. Tolstykh, A. R. Ivanova, and E. N. Skriptunova, “SL–AV Atmospheric Model Version Using u–p Hybrid Vertical Coordinates,” Meteorol. Gidrol., No. 9 (2017) [Russ. Meteorol. Hydrol., No. 9, 42 (2017)].Google Scholar
  12. 12.
    AMIP I I Sea Surface Temperature and Sea Ice Concentration Observations, https://pcmdi.llnl.gov/mips/amip/amip2 /index.html.Google Scholar
  13. 13.
    G. Branstator Long–lived Response of the Midlatitude Circulation and Storm Tracks to Pulses of Tropical Heating,” J. Climate, 27 (2014).Google Scholar
  14. 14.
    CloudSat Data Processing Center. CALIPSO data, http://www.cloudsat.cira.colostate.edu/.Google Scholar
  15. 15.
    J. Cohen et al., “Linking Siberian Snow Cover to Precursors of Stratospheric Variability,” J. Climate, No. 14, 27 (2014).Google Scholar
  16. 16.
    M. A. F. S. Dias, S. Rutledge, P. Kabat, et al., “Cloud and Rain Processes in a Biosphere–Atmosphere Interaction Context in the Amazon Region,” J. Geophys. Res., No. D20, 107 (2002).Google Scholar
  17. 17.
    D. P. Dee et al., “The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).Google Scholar
  18. 18.
    R. Yu. Fadeev, K. V. Ushakov, V. V. Kalmykov, M. A. Tolstykh, and R. A. Ibrayev, “Coupled Atmosphere–Ocean Model SLAV–INMIO: Implementation and First Results,” Russ. J. Num. Anal. and Math. Mod., No. 6, 31 (2016).Google Scholar
  19. 19.
    Global Precipitation Analysis, http://precip.gsfc.nasa.gov/.Google Scholar
  20. 20.
    IPCC Fifth Assessment Report (AR5). Climate Change 2013: The Physical Science Basis, http://www.ipcc.ch/report/ar5/wg1.Google Scholar
  21. 21.
    J. Latham et al., “Marine Cloud Brightening: Regional Applications,” Philos. Trans. A Math. Phys. Eng. Sci., 28 (2014).Google Scholar
  22. 22.
    N. G. Loeb et al., “Toward Optimal Closure of the Earth’s Top–of–atmosphere Radiation Budget,” J. Climate, 22 (2009).Google Scholar
  23. 23.
    Y. Malhi and J. Grace, “Tropical Forests and Atmospheric Carbon Dioxide,” Trends Ecol. Evol., No. 8, 15 (2000).Google Scholar
  24. 24.
    V. Masson et al., “A Global Database of Land Surface Parameters at 1–km Resolution in Meteorological and Climate Models,” J. Climate, 16 (2003).Google Scholar
  25. 25.
    J. Noilhan and J.–F. Mahfouf, “The ISBA Land Surface Parameterization Scheme,” Global and Plan. Change, 13 (1996).Google Scholar
  26. 26.
    J. Noilhan and S. A. Planton, “Simple Parameterization of Land Surface Processes for Meteorological Models,” Mon. Wea. Rev., 117 (1989).Google Scholar
  27. 27.
    G. Riviere and I. Orlanski, “Characteristics of the Atlantic Storm–track Eddy Activity and Its Relation with the North Atlantic Oscillation,” J. Atmos. Sci., No. 2, 64 (2007).Google Scholar
  28. 28.
    K. Saito, J. Cohen, and D. Entekhabi, “Evoiuiion of Atmospheric Response to Early–Season Eurasian Snow Cover Anomalies,” Mon. Wea. Rev., No. 11, 129 (2001).Google Scholar
  29. 29.
    TRMM: Tropical Rainfall Measuring Mission, https://trmm.gsfc.nasa.gov/overiew_dir/background.htmi.Google Scholar
  30. 30.
    F. Vitart, A. Robertson, and D. Anderson, “Subseasonal to Seasonal Prediction Project: Bridging the Gap between Weather and Climate,” https://public.wmo.int/en/resources/bulletin/subseasonal–saesonal–prediction–project–bredging–gap–betwwen–weather–and–climate.Google Scholar
  31. 31.
    J. Walsh and B. Ross, “Sensitivity of 30–Day Dynamical Forecasts to Continental Snow Cover,” J. Climate, No. 7, 1 (1988).Google Scholar
  32. 32.
    R. Wood, “Stratocumulus Clouds,” Mon. Wea. Rev., 120 (2012).Google Scholar
  33. 33.
    K.–M. Xu and D. A. Randall, “Semiempirical Cloudiness Parameterization for Use in Climate Models,” J. Atmos. Sci., No. 21, 53 (1996).Google Scholar
  34. 34.
    Y. Zhuang, R. Fu, J. A. Marengo, et al., “Seasonal Variation of Shallow–to–deep Convection Transition and Its Link to the Environmental Conditions over the Central Amazon,” J. Geophys. Res., No. 5, 122 (2017).Google Scholar
  35. 35.
    L. Zobler, “A World Soil Hydrology File for Global Climate Modeling,” in International Geographic Information Systems Symposium: The Research Agenda, November 15–18, 1987, Arlington, Virginia, Proceedings.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • R. Yu. Fadeev
    • 1
    • 2
    • 3
    Email author
  • M. A. Tolstykh
    • 1
    • 2
    • 3
  • E. M. Volodin
    • 1
  1. 1.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Hydrometeorological Research Center of the Russian FederationMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow oblastRussia

Personalised recommendations