Russian Meteorology and Hydrology

, Volume 44, Issue 1, pp 1–12 | Cite as

Stratospheric Circulation Modeling with the SL-AV Semi-Lagrangian Atmospheric Model

  • V. V. ShashkinEmail author
  • M. A. Tolstykh
  • E. M. Volodin


The article describes the development of the version of the SL-AV global semi-Lagrangian atmospheric model with high spatial resolution in the stratosphere. The new model version uses the vertical grid of 100 levels, grid spacing of 500 m in the layer between 100 and 10 hPa, and the upper lid at 0.04 hPa. The parameterization of the non-orographic gravity wave drag is implemented. Numerous modifications are introduced in the block for the numerical solution of dynamical equations to enhance model stability. The experiment on atmospheric dynamics modeling for 28 years is carried out. It is shown that the SL-AV model reproduces the main features of stratospheric circulation, such as the polar night stratospheric jet formation and sudden stratospheric warming. The quasi-biennial oscillation of equatorial wind is reproduced with realistic period and amplitude.


Stratosphere quasi-biennial oscillation semiannual oscillation sudden stratospheric warming global atmospheric model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. N. Vargin, E. M. Volodin, A. Yu. Karpechko, and A. I. Pogoreltsev, “Stratosphere–Troposphere Interactions,” Vestnik RAN, No. 1, 85 (2015) [Herald of the Russian Academy of Sciences, No. 1, 85 (2015)].Google Scholar
  2. 2.
    D. V. Kulyamin, E. M. Volodin, and V. P. Dymnikov, “Simulation of the Quasi–biennial Oscillations of the Zonal Wind in the Equatorial Stratosphere: Part II. Atmospheric General Circulation Models,” Fiz. Atmos. Okeana. No. 1, 45 (2009) [Izv. Atmos. Oceanic Physics, No. 1, 45 (2009)].Google Scholar
  3. 3.
    D. V. Kulyamin and V. P. Dymnikov, “Spectral Characteristics of Quasi–biennial Oscillations of the Equatorial Stratospheric Wind and the Problem of Synchronization,” Fiz. Atmos. Okeana, No. 4, 46 (2010) [Izv. Atmos. Oceanic Physics, No. 4, 46 (2010)].Google Scholar
  4. 4.
    M. A. Tolstykh, J.–F. Geleyn, E. M. Volodin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, S. V. Kostrykin, V. G. Mizyak, R. Yu. Fadeev, V. V. Shashkin, A. V. Shlyaeva, I. N. Ezau, and A. Yu. Yurova, “Development of the Multiscale Version of the SL–AV Global Atmosphere Model,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].Google Scholar
  5. 5.
    M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, G. S. Goyman, R. B. Zaripov, D. B. Kiktev, S. V. Makhnorylova, V. G. Mizyak, and V. S. Rogutov, “Multiscale Global Atmosphere Model SL–AV: The Results of Medium–range Weather Forecasts,” Meteorol. Gidrol., No. 11 (2018) [Russ. Meteorol. Hydrol., No. 11, 43 (2018)].Google Scholar
  6. 6.
    M. A. Tolstykh, V. V. Shashkin, R. Yu. Fadeev, A. V. Shlyaeva, V. G. Mizyak, V. S. Rogutov, N. N. Bogoslovskii, G. S. Goyman, S. V. Makhnorylova, and A. Yu. Yurova, Atmosphere Modelling Systemfor Seamless Prediction (Triada Ltd, Moscow, 2017) [in Russian].Google Scholar
  7. 7.
    V. V. Shashkin, “Forecast of Polar Stratospheric Vortex Dynamics Using the SL–AV Global Atmospheric Model,” Meteorol. Gidrol., No. 3 (2018) [Russ. Meteorol. Hydrol., No. 3, 43 (2018)].Google Scholar
  8. 8.
    M. Baldwin, L. Gray, T. Dunkerton, K. Hamilton, P. Haynes, W. Randel, J. Holton, M. Alexander, I. Hirota, T. Horinouchi, D. Jones, J. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The Quasi–biennial Oscillation,” Rev. Geophys., 39 (2003).Google Scholar
  9. 9.
    M. Baldwin, D. Thompson, E. Shuckburgh, W. Norton, and N. Gillett, “Weather from Stratosphere?”, Science, 301 (2003).Google Scholar
  10. 10.
    J. Bates, S. Moorthi, and R. Higgins, “A Global Multi–level Atmospheric Model Using a Vector Semi–Lagrangian Finite–difference Scheme. Part I: Adiabatic Formulation,” Mon. Wea. Rev, 121 (1993).Google Scholar
  11. 11.
    C. Bell, L. Gray, A. Gharlton–Perez, M. Joshi, and A. Scaife, “Stratospheric Communicalion of El Nino Teleconnections to European Winter,” J. Climate, 22 (2009).Google Scholar
  12. 12.
    A. Butler, D. Seidel, S. Hardiman, N. Butchart, and A. Match, “Defining Sudden Stratospheric Warmings,” Bull. Amer. Meteorol. Soc., 96 (2015).Google Scholar
  13. 13.
    B. Catry, J.–F. Geleyn, F. Bouyssel, J. Cedilnik, R. Brozkova, M. Derkova, and R. Mladek, “A New Sub–grid Scale Lift Formulation in a Mountain Drag Parameterisation Scheme,” Meteorol. Zeitschrift, 17 (2008).Google Scholar
  14. 14.
    A. Charlton and L. Polvani, “A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks,” J. Climate, 20 (2007).Google Scholar
  15. 15.
    A. J. Charlton–Perez, M. P. Baldwin, T. Birner, R. X. Black, et al., “On the Lack of Stratospheric Dynamical Variabil ity in Lowtop Versions of the CMIP5 Models,” J. Geophys. Res., 118 (2013).Google Scholar
  16. 16.
    M. Diamantakis, “Improving ECMWF Forecast of Sudden Stratospheric Warmings,” ECMWF Newsletter, 141 (2014), 3 6–improving–ecmwf–forecasts–sudden–stratospheric–warmings.Google Scholar
  17. 17.
    C. O. Hines, “Doppl er Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere. Part 1: Basic Formulation,” J. Atmos. Terr. Phys., No. 4, 59 (1997).Google Scholar
  18. 18.
    J. R. Holton, In tro duction to Dy namic Me te o rology, 4th ed. (Elsevier, 2004).Google Scholar
  19. 19.
    J. R. Holton and H.–C. Tan, “The Quasi–biennial Oscillation in the Northern Hemisphere Lower Stratosphere,” J. Meteorol. Soc. Japan, 60 (1982).Google Scholar
  20. 20.
    M. Hortal, “The Development and Testing of a New Two–time–level Semi–Lagrangian Scheme (SETTLS) in the ECWMF Forecast Model,” Quart. J. Roy. Meteorol. Soc., 128 (2002).Google Scholar
  21. 21.
    IFS Documentation CY43R1, Part IV: Physical Processes,–part–iv–physical–processes, 2016.Google Scholar
  22. 22.
    J. Kidston, A. Scaife, S. Hardiman, D. Mitchell, N. Butchart, M. Baldwin, and L. Gray, “Stratospheric Influence on Tropospheric Jet Streams, Storm Tracks and Surface Weather,” Nature Geosci., No. 6, 8 (2015).Google Scholar
  23. 23.
    E. Kolstad, T. Breiteig, and A. Scaife,“The Association between Stratospheric Weak Polar Vortex Events and Cold Air Outbreaks in the Northern Hemisphere,” Quart. J. Roy. Meteorol. Soc., 136 (2010).Google Scholar
  24. 24.
    G. Manney, Z. Lawrence, M. Santee, W. Read, N. Livesey, A. Lambert, L. Froidevaux, H. Pumphrey, and M. Schwartz, “A Minor Sudden Stratospheric Warming with a Major Impact: Transport and Polar Processing in the 2014/2015 Arctic Winter,” Geophys. Res. Lett., 42 (2015).Google Scholar
  25. 25.
    T. Mlynarz, Parametrisation du Frottement des Ondes de Gravite Orographiques~Hypothese de Resonance (Rapport de stage, Meteo France, Centre de Recherches en Meteorologie Dynamique (CRMD), Juin–Aout Maitrise de Physique et Applications, Universite P. et M. Curie, Paris, 1990).Google Scholar
  26. 26.
    A. Robert, “A Semi–Lagrangian and Semi–implicit Numerical Integration Scheme for the Primitive Meteorological Equations,” J. Meteorol. Soc. Japan, No. 1, Ser. II, 60 (1982).Google Scholar
  27. 27.
    M. Sigmond, J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, “Enhanced Seasonal Forecast Skill Following Stratospheric Sudden Warmings,” Nature Geosci., 6 (2013).Google Scholar
  28. 28.
    P. Termonia, C. Fischer, E. Bazile, F. Bouyssel, R. Brozcaronkova, P. Benard, B. Bochenek, D. Degrauwe. M. Derkova, R. E. Khatib, R. Hamdi, J. Masek, P. Pottier, N. Pristov, Y. Seity, P. Smolikova, O. Spaniel, M. Tudor, Y. Wang, C. Wittmann, and A. Joly, “The ALADIN Sysiem and Its Canonical Model Configurations AROME CY41T1 and ALARO CY40T1,” Geosci. Model Develop., 11 (2018).Google Scholar
  29. 29.
    M. Tolstykh, V. Shashkin, R. Fadeev, and G. Goyman, “Vorticity–divergence Semi–Lagrangian Global Atmospheric Model SL–AV20: Dynamical Core,” Geosci. Model Dev., 10 (2017).Google Scholar
  30. 30.
    L. Tomassini et al., “The Role of Stratosphere Troposphere Coupling in the Occurrence of Extreme Winter Cold Spells over Northern Europe,” J. Advances in Modeling Earth Systems, M00A03, 4 (2012).Google Scholar
  31. 31.
    C. Tsay, “Analysis of Large–scale Wave Disturbances in the Tropics Simulated by an NCAR Global Circulation Model,” J. Atmos. Sci., No. 2, 31 (1974).Google Scholar
  32. 32.
    E. Volodin, E. Mortikov, S. Kostrykin, V. Galin, V. Lykossov, A. Gritsun, N. Diansky, A. Gusev, and N. Iakovlev, “Simulation of the Present–day Climate with the Climate Model INMCM5,” Climate Dynamics, No. 11–12, 49 (2017).Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • V. V. Shashkin
    • 1
    • 2
    Email author
  • M. A. Tolstykh
    • 1
    • 2
    • 3
  • E. M. Volodin
    • 1
    • 3
    • 4
  1. 1.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Hydrometeorological Research Center of the Russian FederationMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow oblastRussia
  4. 4.Lomonosov Moscow State University, GSP-1Leninskie Gory, MoscowRussia

Personalised recommendations