Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 12, pp 843–851 | Cite as

Simulation of Extreme Surges in the Taganrog Bay with Atmosphere and Ocean Circulation Models

  • V. V. FominEmail author
  • N. A. Diansky
Article

Abstract

The simulation the most extreme surges over the period of instrumental observations in the Taganrog Bay since 1881, the surges occurred on March 24, 2013 and September 24, 2014. The objective of the simulation is to study surge formation features and to reveal requirements for the accuracy of simulating atmospheric and oceanic circulation in the Sea of Azov. For this purpose, the Institute of Numerical Mathematics Ocean Model (INMOM) with the spatial resolution of ~4 km and ~250 m was used. The atmospheric forcing over the Black Sea region was specified using ERA-Interim reanalysis data and WRF model data with the spatial resolution of 80 and 10 km, respectively. It is shown that the quality of simulation of extreme surges in the Sea of Azov is more dependent on the quality of the input atmospheric forcing than on the spatial resolution of the ocean circulation model. The usage of WRF data as atmospheric forcing allows the more accurate simulation of extreme surges. However, the simulation of the extreme surge of 2014 overestimates, and simulations for the 2013 surge underestimate the surge level. Evidently, as the used version of INMOM does not take into account the coastal zone flooding, the maximum surge value is overestimated.

Keywords

Sea of Azov storm surge numerical simulation atmosphere and ocean circulation models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulation and Prediction of Climate Changes in the 19th to 21st Centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, Model of the Earth’s Climate System,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 49 (2013) [Izv., Atmos. Oceanic Phys., No. 4, 49 (2013)].Google Scholar
  2. 2.
    A. V. Gusev and N. A. Diansky, “Numerical Simulation of the World Ocean Circulation and Its Climatic Variability for 1948–2007 Using the INMOM,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 50 (2014) [Izv., Atmos. Oceanic Phys., No. 1, 50 (2014)].Google Scholar
  3. 3.
    N. A. Diansky, Ocean Circulation Modeling and Investigation of Ocean Response to Short- and Long-period Atmospheric Forcing (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  4. 4.
    N. A. Diansky, A. V. Gusev, and V. V. Fomin, “The Specific Features of Pollution Spread in the Northwest Pacific Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 2, 48 (2012)].Google Scholar
  5. 5.
    N. A. Diansky, I. M. Kabatchenko, V. V. Fomin, V. V. Arkhipov, and A. S. Tsvetsinskii, “Simulation of Hydrometeorological Characteristics in the Kara and Pechora Seas and Computation of Sediments near the Western Coast of the Yamal Peninsula,” Vesti Gazovoi Nauki, No. 2 (2015) [in Russian].Google Scholar
  6. 6.
    N. A. Diansky, V. V. Fomin, I. M. Kabatchenko, and V. M. Gruzinov, “Simulation of Circulation in the Kara and Pechora Seas with the System for Operational Ditgnotis and Fore tasting of Marine Dynamtcs,” Arktika: Ekologiya i Ekonomika, No. 1 (2014) [in Russian].Google Scholar
  7. 7.
    E. A. Zakharchuk, N. A. Tikhonova, A. V. Gusev, and N. A. Diansky, “Comparison of Methods for Numerical Hydrodynamic Modeling of the Baltic Sea Level Fluctuations,” Trudy GOIN, No. 217 (2016) [in Russian].Google Scholar
  8. 8.
    V. A. Ivanov and V. N. Belokopytov, Oceanography of the Black Sea (Marine Hydrophysical Inst., Sevastopol, 2011) [in Russian].Google Scholar
  9. 9.
    G. I. Marchuk, Methods of Numerical Mathematics (Lan’, Saint Petersburg, 2009) [in Russian].Google Scholar
  10. 10.
    S. K. Popov and A. L. Lobov, “Diagnosis and Forecasting of the Flood in Taganrog Using an Operational Hydrodynamic Model,” Trudy Gidromettsentra Rossii, No. 362 (2016) [in Russian].Google Scholar
  11. 11.
    D. V. Stepanov, N. A. Diansky, and V. V. Novotryasov, “Numerical Simulation of Water Circulation in the Central Part of the Sea of Japan and Study of Its Long-term Variability in 1958–2006,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 50 (2014) [Izv., Atmos. Oceanic Phys., No. 1, 50 (2014)].Google Scholar
  12. 12.
    Yu. G. Filippov, “Natoal Fluctuations of the Sea of Azov Level,” Meteorol. Gidrol., No. 2 (2012) [Russ. Meteorol. Hydrol., No. 2, 37 (2012)].Google Scholar
  13. 13.
    N. G. Yakovlev, “Reproduction of the Large-scale State of Water and Sea Ice in the Arctic Ocean in 1948–2002: Part I. Numerical Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 45 (2009) [Izv., Atmos. Oceanic Phys., No. 3, 45 (2009)].Google Scholar
  14. 14.
    D. Brydon, S. San, and R. Bleck, “A New Approximation of the Equation of State for Seawater, Suitable for Numerical Ocean Models,” J. Geophys. Res., No. C1, 104 (1999).Google Scholar
  15. 15.
    W. G. Large and S. G. Yeager, “The Global Climatology of an Interannually Varying Air-sea Flux Data Set,” Climate Dynamics, 33 (2009).Google Scholar
  16. 16.
    R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, C. R. Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, and D. Seidov, World Ocean Atlas 2013, Vol. 1: Temperature, Ed. by S. Levitus (NOAA Atlas NESDIS 73, Washington, DC, 2013).Google Scholar
  17. 17.
    G. Matishov, D. Matishov, Y. Gargopa, L. Dashkevich, S. Berdnikov, V. Kulygin, O. Arkhipova, A. Chikin, I. Shabas, O. Baranova, and I. Smolyar, Clima tic Atlas of the Sea of Azov 2008, Ed. by G. Matishov and S. Levitus (NOAA Atlas NESDIS 65, Washington, DC, 2008).Google Scholar
  18. 18.
    J. O’Brien, Advanced Physical Oceanographic Numerical Modelling (Springer, 1986).CrossRefGoogle Scholar
  19. 19.
    R. C. Pacanowski and S. G. Philander, “Parameterization of Vertical Mixing in Numerical Models of the Tropical Ocean,” J. Phys. Oceanogr., 11 (1981).Google Scholar
  20. 20.
    A. Proshutinsky, M. Steele, J. Zhang, G. Holloway, N. Steiner, S. Hakkinen, D. M. Holland, R. Gerdes, C. Koeberle, M. Karcher, M. Johnson, W. Maslowski, Y. Zhang, W. Hibler, and J. Wang, “The Arctic Ocean Model Intercomparison Project (AOMIP),” EOS, No. 51, 82 (2001).Google Scholar
  21. 21.
    W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, A Description of the Advanced Research WRF Vesion 3, NCAR Technical Note (2008).Google Scholar
  22. 22.
    V. B. Zalesny, N. A. Diansky, V. V. Fomin, S. N. Moshonkin, and S. G. Demyshev, “Numerical Model of the Circulation of the Black Sea and the Sea of Azov,” Russ. J. Num. Anal. and Math. Model., No. 1, 27 (2012).Google Scholar
  23. 23.
    M. M. Zweng, J. R. Reagan, J. I. Antonov, R. A. Locarnini, A. V. Mishonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, D. R. Johnson, D. Seidov, and M. M. Biddle, World Ocean Atlas 2013, Vol. 2: Salinity, Ed. by S. Levitus (NOAA Atlas NESDIS 74, 2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Zubov State Oceanographic InstituteMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations