Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 9, pp 557–564 | Cite as

Contribution of Greenhouse Gas Radiative Forcing and Atlantic Multidecadal Oscillation to Surface Air Temperature Trends

  • I. I. Mokhov
  • D. A. Smirnov
Article
  • 4 Downloads

Abstract

The contributions of radiative forcing of greenhouse gases (GHG) and Atlantic Multidecadal Oscillation (AMO) to the trends in global surface air temperature (GST) and surface air temperature for different latitude bands are estimated. Instrumental observational data obtained since the middle of the 19th century and three-component autoregressive models are used. Characteristics of influences of both factors on GST (Wiener–Granger causality) are obtained. The contribution of AMO over the length intervals of 15–30 years appears comparable in absolute value to the contribution of GHG and sometimes even exceeds it, while its contribution over 60-year and longer periods is insignificant. During the recent decades, GHG contribute stronger to the trends of GST and tropical surface air temperature, while their contribution to the trends in surface air temperature in the middle and high latitudes is smaller.

Keywords

Temperature trends Atlantic Multidecadal Oscillation greenhouse gases radiative forcing Wiener–Granger causality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Alekseev, “Arctic Dimension of Global Warming,” Led i Sneg, No. 2, 54 (2014) [in Russian].Google Scholar
  2. 2.
    Second Roshydromet Assessment Report on Climate Change and its Consequences in the Russian Federation (Roshydromet, Moscow, 2014) [in Russian].Google Scholar
  3. 3.
    G. V. Gruza and E. Ya. Ran'kova, Observed and Expected Climate Changes in the Russian Federation: Air Temperature (VNIIGMI-MTsD, Obninsk, 2012) [in Russian].Google Scholar
  4. 4.
    I. I. Mokhov, “Russian Climate Studies in 2011–2014,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 53 (2017) [Izv., Atmos. Oceanic Phys., No. 5, 53 (2017)].Google Scholar
  5. 5.
    I. I. Mokhov, “Contemporary Climate Changes in the Arctic,” Vestnik Akad. Nauk, No. 5–6, 85 (2015) [Herald of the Russ. Acad. Sci., No. 3, 85 (2015)].Google Scholar
  6. 6.
    I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, and A. A. Karpenko, “Interrelation between Variations in the Global Surface Air Temperature and Solar Activity Based on Observations and Reconstructions,” Dokl. Akad. Nauk, No. 1, 409 (2006) [Dokl. Earth Sci., No. 5, 409 (2006)].Google Scholar
  7. 7.
    I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, and A. A. Karpenko, “Model Estimations of Possible Climatic Changes in 21st Century at Different Scenarios of Solar and Volcanic Activ tties and Anthropogenic Impact,” Kosmicheskie Issledovaniya, No. 4, 46 (2008) [Cosmic Res., No. 4, 46 (2008)].Google Scholar
  8. 8.
    I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, and A. A. Karpenko, “Model Estimates of Global Climatic Changes in the 21st Century with Account for Different Variation Scenarios of Solar Activíty,” Dokl. Akad. Nauk, No. 2, 411 (2006) [Dokl. Earth Sci., No. 8, 411 (2006)].Google Scholar
  9. 9.
    I. I. Mokhov and A. A. Karpenko, “Simulation of the Warming in the Area of the Arctic Peninsula,” Problemy Arktiki i Antarktiki, No. 76 (2007) [in Russian].Google Scholar
  10. 10.
    I. I. Mokhov, A. A. Karpenko, and P. A. Stott, “Highest Rates of Regional Climate Warming over the Last Decades and Assessment of the Role of Natural and Anthropogenic Factors,” Dokl. Akad. Nauk, No. 4, 406 (2006) [Dokl. Earth Sci., No. 1, 406 (2006)].Google Scholar
  11. 11.
    I. I. Mokhov, V. A. Semenov, V. Ch. Khon, and F. A. Pogarskii, “Climate Trends in the Northern Hemisphere High Latitudes: Detection and Simulation,” Led i Sneg, No. 2, 53 (2013) [in Russian].Google Scholar
  12. 12.
    I. I. Mokhov and D. A. Smirnov, “Relation between the Variations in the Global Surface Temperature, El Nino/La Nina Phenomena, and the Atlantic Multidecadal Oscillation,” Dokl. Akad. Nauk, No. 5, 467 (2016) [Dokl. Earth Sci., No. 2, 467 (2016)].Google Scholar
  13. 13.
    I. I. Mokhov and D. A. Smirnov, “Diagnostics of a Cause-Effect Relation between Solar Activity and the Earth's Global Surface Temperature,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 44 (2008) [Izv., Atmos. Oceanic Phys., No. 3, 44 (2008)].Google Scholar
  14. 14.
    I. I. Mokhov and D. A. Smirnov, “Estimating the Contributions of the Atlantic Multidecadal Oscillation and Variations in the Atmospheric Concentration of Greenhouse Gases to Surface Air Temperature Trends from Observations,” Dokl. Akad. Nauk, No. 1, 480 (2018) [Dokl. Earth Sci., No. 1, 480 (2018)].Google Scholar
  15. 15.
    I. I. Mokhov and D. A. Smirnov, “The Trivariate Seasonal Analysis of Couplings between El Niiio, North Atlantic Oscillation, and Indian Monsoon,” Meteorol. Gidrol., No. 12 (2016) [Russ. Meteorol. Hydrol., No 11–12, 41 (2016)].Google Scholar
  16. 16.
    I. I. Mokhov and D. A. Smirnov, “Empirical Estimates of the Influence of Natural and Anthropogenic Factors on the Global Surface Temperature,” Dokl. Akad. Nauk, No. 5, 426 (2009) [Dokl. Earth Sci., No. 5, 427 (2009)].Google Scholar
  17. 17.
    I. I. Mokhov, D. A. Smirnov, and A. A. Karpenko, “Relationship of Global Surface Air Temperature Changes with Various Natural and Anthropogenic Factors: Estimates Based on Observations,” in Problems of Ecological Monitoring and Ecosystem Modeling, No. 24 (2011) [in Russian].Google Scholar
  18. 18.
    D. A. Smirnov and I. I. Mokhov, “Estimation of Interaction between Climatic Processes: Effect of Sparse Sample of Analyzed Data Series,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 49 (2013) [Izv., Atmos. Oceanic Phys., No. 5, 49 (2013)].Google Scholar
  19. 19.
    A. Attanasio, “Testing for Linear Granger Causality from Natural/Anthropogenic Forcings to Global Temperature Anomalies,” Theor. Appl. Climatl., No. 1–2, 110 (2012).Google Scholar
  20. 20.
    A. Attanasio, A. Pasini, and U. Triacca, “A Contribution to Attribution of Recent Global Warming by Out-of-sample Granger Causality Analysis,” Atmos. Sci. Lett., No. 1, 13 (2012).Google Scholar
  21. 21.
    A. Attanasio, A. Pasini, and U. Triacca, “Granger Causality Analyses for Climatic Attribution,” Atmos. Clim. Sci., 3 (2013).Google Scholar
  22. 22.
    A. Attanasio and U. Triacca, “Detecting Human Influence on Climate Using Neural Networks Based Granger Causality,” Theor. Appl. Climatl., No. 1–2, 103 (2011).Google Scholar
  23. 23.
    Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA, 2013).Google Scholar
  24. 24.
    C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-spectral Methods,” Econometrica, No. 3, 37 (1969).Google Scholar
  25. 25.
    J. Imbers, A. Lopez, C. Huntingford, and M. R. Allen, “Testing the Robustness of the Anthropogenic Climate Change Detection Statements Using Different Empirical Models,” J. Geophys. Res. Atmos., 118 (2013).Google Scholar
  26. 26.
    R. K. Kaufmann, and D. I. Stern, “Evidence for Human Influence on Climate from Hemispheric Temperature Relations,” Nature, 388 (1997).Google Scholar
  27. 27.
    E. Kodra, S. Chatterjee, and A. R. Ganguly, “Exploring Granger Causality between Global Average Observed Time Series of Carbon Dioxide and Temperature,” Theor. Appl. Climatl., No. 3–4, 104 (2011).Google Scholar
  28. 28.
    J. L. Lean and D. H. Rind, “How Natural and Anthropogenic Influences Alter Global and Regional Surface Temperatures: 1889 to 2006,” Geophys. Res. Lett., 35 (2008).Google Scholar
  29. 29.
    J. L. Lean and D. H. Rind, “How Will Earth's Surface Temperature Change in Future Decades?", Geophys. Res. Lett., 36 (2009).Google Scholar
  30. 30.
    A. Pasini, U. Triacca, and A. Attanasio, “Evidence of Recent Causal Decoupling between Solar Radiation and Global Temperature,” Environ. Res. Lett., No. 3, 7 (2012).Google Scholar
  31. 31.
    F. Pithan and T. Mauritsen, “Arctic Amplification Dominated by Temperature Feedbacks in Contemporary Climate Models,” Nature Geosci., 7 (2014).Google Scholar
  32. 32.
    R. Reichel, P. Thejll, and K. Lassen, “The Cause-and-effect Relationship of Solar Cycle Length and the Northern Hemisphere Air Surface Temperature,” J. Geophys. Res., No. A8, 106 (2001).Google Scholar
  33. 33.
    D. A. Smirnov and I. I. Mokhov, “From Granger Causality to "Long-term Causaltty": Application to Climatic Data,” Phys. Rev. E, No. 1, 80 (2009).Google Scholar
  34. 34.
    D. A. Smirnov and I. I. Mokhov, “Relating Granger Causality to Long-term Causal Effects,” Phys. Rev. E, No. 4, 92 (2015).Google Scholar
  35. 35.
    D. I. Stern and R. K. Kaufmann, “Anthropogenic and Natural Causes of Climate Change,” Climatic Change, 122 (2014).Google Scholar
  36. 36.
    A. Stips, D. Macias, C. Coughlan, E. Garcia-Gorriz, and X. San Liang, “On the Causal Structure between CO2 and Global Temperature,” Sci. Rep., 6 (2016).Google Scholar
  37. 37.
    L. Sun and M. Wang, “Global Warming and Global Dioxide Emission: An Empirical Study,” J. Environ. Management, 46 (1996).Google Scholar
  38. 38.
    R. S. J. Tol and A. F. de Vos, “A Bayesian Statistical Analysis of the Enhanced Greenhouse Effect,” Clim. Change, 38 (1998).Google Scholar
  39. 39.
    R. S. J. Tol and A. F. de Vos, “Greenhouse Statistics——Time Series Analysis,” Theor. Appl. Climatl., 48 (1993).Google Scholar
  40. 40.
    U. Triacca, “Is Granger Causality Analysis Appropriate to Investigate the Relationship between Atmospheric Concentration of Carbon Dioxide and Global Surface Air Temperature?", Theor. Appl. Climatl., 81 (2005).Google Scholar
  41. 41.
    U. Triacca, “On the Use of Granger Causaltty to Investigate the Human Influence on Climate,” Theor. Appl. Climatl., 69 (2001).Google Scholar
  42. 42.
    U. Triacca, A. Attanasio, and A. Pasini, “Anthropogenic Global Warming Hypothesis: Testing Its Robustness by Granger Causality Analysis,” Environmetrics, No. 4, 24 (2013).Google Scholar
  43. 43.
    P. F. Verdes, “Assessing Causality from Multivariate Time Series,” Phys. Rev. E., 72 (2005).Google Scholar
  44. 44.
    P. F. Verdes, “Global Warming is Driven by Anthropogenic Emissions: A Time Series Analysis Approach,” Phys. Rev. Lett., 99 (2007).Google Scholar
  45. 45.
    N. Wiener, “Theory of Prediction," in Modern Mathematics for the Engineer, Ed. by E. F. Beckenbach (McGraw-Hill, New York, 1956).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State University, GSP-1Leninskie Gory, MoscowRussia
  3. 3.Kotel’nikov Institute of Radio Engineering and Electronics, Saratov BranchRussian Academy of SciencesSaratovRussia
  4. 4.Institute of Applied PhysicsRussian Academy of Sciences, GSP-120Nizhny NovgorodRussia

Personalised recommendations