Russian Meteorology and Hydrology

, Volume 43, Issue 6, pp 379–389 | Cite as

Long–term Variations in Wind Speed in the Atmospheric Layer of 0–2 km over the Russian Arctic from Radiosonde Data for 1964–2016

  • O. A. AldukhovEmail author
  • I. V. Chernykh


The results of the analysis of statistical characteristics for wind speed are presented for the lower 2–km atmospheric layer over the Russian Arctic. The calculations are based on radiosonde data for the observation period of 1964–2016. The data passed the procedure of complex control of quality and the procedure of quality control specially developed for the atmospheric layer of 0–2 km. The Akima cubic spline interpolation is used for computing wind speed. The trends are estimated using the classic method. It is shown that the spatiotemporal distribution of the trends is not uniform. Wind speed and its standard deviations in the analyzed layer over the Arctic mainly increase in the layer of 400–800 m above the surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11983_2018_33_MOESM1_ESM.pdf (1.3 mb)
Long–term Variations in Wind Speed in the Atmospheric Layer of 0–2 km over the Russian Arctic from Radiosonde Data for 1964–2016


  1. 1.
    O. A. Aldukhov and A. F. Bryukhan', “Software Package for Statistical Processing of Radiosonde Data for Assessing Atmospheric Dispersion Conditions during Geo economic Substantiation of Construction of Nuclear and Thermal Power Stations,” Vestnik MGSU, No. 2 (2012).Google Scholar
  2. 2.
    O. A. Aldukhov, V. A. Orzhekhovskaya, T. O. Sadovnikova, and T. V. Rudenkova, AEROSTAB: Archive of Current Aerological Information. Description of the Archive (VNIIGMI–MTsD, Obninsk, 1990) [in Russian].Google Scholar
  3. 3.
    O. A. Aldukhov and I. V. Chernykh, Methods of Analysis and Interpretation of Upper–air Sounding Data, Vol. 1: Quality Control and Data Processing (VNIIGMI–MTsD, Obninsk, 2013) [in Russian].Google Scholar
  4. 4.
    O. A. Aldukhov and I. V. Chernykh, Methods of Anally s is and Interpretation of Upper–air Sounding Data, Vol. 3: Humidity and Temperature in the Atmosphere: Statistical Characteristics (VNIIGMI–MTsD, Obninsk, 2015) [in Russian].Google Scholar
  5. 5.
    F. F. Bryukhan' and V. N. Ivanov, “Conceptual Scheme of Aerometeorological Studies When Selecting an Area and a Site for Nuclear Stations,” Trudy IEM, No. 55 (1992) [in Russian].Google Scholar
  6. 6.
    N. L. Byzova, E. K. Garger, and V. N. Ivanov, Experimental Studies of Atmospheric Diffusion and Calculations of Impurity Scattering (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  7. 7.
    N. L. Byzova, V. N. Ivanov, and E. K. Garger, Turbulence in the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  8. 8.
    L. S. Gandin and R. L. Kagan, Statistical Methods for Interpretation of Meteorological Data (Gidrometeoizdat, Leningrad, 1976) [in Russian].Google Scholar
  9. 9.
    V. A. Gordin and E. A. Loktionova, “Spline Approximation Application to the Temperature Profile Calculation,” Trudy Gidromettsentra SSSR, No. 212 (1978) [in Russian].Google Scholar
  10. 10.
    C. de Boor, A Practical Guide to Splines (Radio i Svyaz', Moscow, 1985) [Transl. from English].Google Scholar
  11. 11.
    L. T. Matveev, A Course of General Meteorology. Atmospheric Physics (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  12. 12.
    Assessment Report on Climate Change and Its Consequences in the Russian Federation, Vol. 1: Climate Change (Roshydromet, Moscow, 2008) [in Russian].Google Scholar
  13. 13.
    T. V. Rudenkova, “Archiving Format of Current Aerological Data Transmitted via Communication Channels for PC,” Trudy VNIIGMI–MTsD, No. 174 (2010) [in Russian].Google Scholar
  14. 14.
    Yu. Yu. Sokolov, “Archive of Radiosonde Data for the Boundary Layer on ML ES EVM,” Trudy VNIIGMI–MTsD, No. 140 (1987) [in Russian].Google Scholar
  15. 15.
    A. M. Sterin, “Sensitivity of Estimated Trends of Tropospheric and Lower Stratospheric Temperature from Radiosonde Data. Part I. Choice of Data Set, Length of Series, and Analysis Methods,” Meteorol. Gidrol., No. 5 (2004) [Russ. Meteorol. Hydrol., No. 5 (2004)].Google Scholar
  16. 16.
    S. B. Stechkin and Yu. N. Subbotin, Splines in Numerical Mathematics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  17. 17.
    O. A. Alduchov and R. E. Eskridge, Complex Quality Control of Upper Air Parameters at Mandatory and Significant Levels for the CARDS Dataset (National Climatic Data Center Report, Asheville, NC, 1996).Google Scholar
  18. 18.
    R. E. Eskridge, O. A. Alduchov, I. V. Chernykh, Z. Panmao, A. C. Polansky, and S. R. Doty, “A Comprehensive Aerological Reference Dataset (CARDS): Rough and Systematic Errors,” Bull. Amer. Meteorol. Soc., 76 (1995).Google Scholar
  19. 19.
    V. A. Gordin, Mathematical Problem and Methods in Hydrodynamical Weather Forecasting (Gordon & Breach, Amsterdam, 2000).Google Scholar
  20. 20.
    D. L. Hartmann, A. M. G. Klein Tank, M. Rusticucci, L. V. Alexander, S. Brannimann, Y. A. R. Charabi, F. J. Dentener, E. J. Dlugokencky, D. R. Easterling, A. Kaplan, B. J. Soden, P. W. Thorne, M. Wild, and P. Zhai, “Observations: Atmosphere and Surface,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA, 2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.All–Russian Research Institute of Hydrometeorological Information–World Data CenterObninskRussia

Personalised recommendations