Russian Meteorology and Hydrology

, Volume 43, Issue 3, pp 168–177 | Cite as

Temporal Variations in the Vertical Distribution of Stratospheric Ozone over Obninsk from Lidar Data

Article
  • 5 Downloads

Abstract

The results of lidar measurements of ozone profiles over Obninsk in the altitude range of 12–35 km in 2012–2016 are presented. Temporal variations in total ozone in the above altitude range and seasonal variations in the vertical distribution of ozone are considered. Basic attention is paid to the analysis of ozone profile variations on the daily and weekly scales. The backtrajectory analysis demonstrated that in most cases the formation of layers with low or high ozone values is explained by the direction of meridional advection. Cross-correlation coefficients for the variations in ozone and temperature relative to the current monthly mean variations are calculated. Rather high values of correlation coefficients (~0.4–0.6) are obtained for summer in the low stratosphere (100 and 160 hPa) and for winter in the upper troposphere (50 and 20 hPa). In general, variations in ozone profiles are consistent with available climatologic data.

Keywords

Ozone variations stratosphere lidar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Bekoryukov, I. V. Bugaeva, G. R. Zakharov, et al., “Investigation of the Azores High Parameters Affecting Ozone Variations in Western Europe,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 31 (1995) [Izv., Atmos. Oceanic Phys., No. 1, 31 (1995)].Google Scholar
  2. 2.
    V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, et al., “Excimer-laser-based System for Tropospheric and Stratospheric Ozone Measurements,” Kvantovaya Elektronika, No. 6, 21 (1994) [Quantum Electronics, No. 6, 21 (1994)].Google Scholar
  3. 3.
    N. F. Elanskii, “Russian Studies of Atmospheric Ozone in 2007-2011,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 3, 48 (2012)].Google Scholar
  4. 4.
    A. M. Zvyagintsev, P. N. Vargin, and S. Peshin, “Total Ozone Variations and Trends during the Period 1979-2014,” Optika Atmosfery i Okeana, No. 9, 28 (2015) [Atmos. Ocean. Opt., No. 6, 28 (2015)].Google Scholar
  5. 5.
    A. M. Zvyagintsev, G. M. Kruchenitskii, and A. A. Chernikov, “Variations in the Vertical Distribution of Stratospheric Ozone and Their Correlation with Tropopause Height Variations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 41 (2005) [Izv., Atmos. Oceanic Phys., No. 4, 41 (2005)].Google Scholar
  6. 6.
    V. V. Zuev, Lidar Control of the Stratosphere (Nauka, Novosibirsk, 2004) [in Russian].Google Scholar
  7. 7.
    V. E. Ivanov, M. B. Fridzon, and S. P. Essyak, Atmospheric Radio Sounding (Urals'skoe Otdelenie RAN, Yekaterinburg, 2004) [in Russian].Google Scholar
  8. 8.
    E. P. Kropotkina, Yu. Yu. Kulikov, V. G. Ryskin, and S. V. Solomonov, “Studying the Spatiotemporal Distribution of Stratospheric Ozone from Observations on Millimeter Waves in Middle and High Latitudes,” Izv. Vuzov. Radiofizika, No. 10-11, 50 (2007) [in Russian].Google Scholar
  9. 9.
    G. M. Kruchenitskii, V. I. Bekoryukov, V. M. Voloshchuk, et al., “On Contribution of Dynamic Processes to the Formation of Abnormally Low Total Ozone in the Northern Hemisphere,” Optika Atmosfery i Okeana, No. 9, 9 (1996) [in Russian)].Google Scholar
  10. 10.
    Yu. Yu. Kulikov, A. A. Krasil'nikov, and V. G. Ryskin, “Microwave Studies of the Structure of the Polar-latitude Ozone Layer during Winter Anomalous Warming Events in the Stratosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 38 (2002) [Izv., Atmos. Oceanic Phys., No. 2, 38 (2002)].Google Scholar
  11. 11.
    K. Mohanakumar, Stratosphere Troposphere Interactions (Fizmatlit, Moscow, 2011) [Transl. from English].Google Scholar
  12. 12.
    S. P. Perov and A. Kh. Khrgian, Modern Problems of Atmospheric Ozone (Gidrometeoizdat, Leningrad, 1980) [in Russian].Google Scholar
  13. 13.
    S. A. Sitnov, “Effects of the Equatorial Quasi-biennial Oscillation in the Total Ozone Content over Russia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 6, 42 (2006)].Google Scholar
  14. 14.
    S. V. Solomonov and S. B. Rozanov, “Atmospheric Ozone mm-wave Monitoring,” Elektronika NTB, No. 2 (2002) [in Russian].Google Scholar
  15. 15.
    S. S. Khmelevtsov, Yu. G. Kaufman, V. A. Korshunov, et al., “Laser Sounding of Atmospheric Parameters at Obninsk Lidar Station of Taifun Scientific Industrial Association,” in Problems of Atmospheric Physics. Collected Papers (Gidrometeoizdat, Saint Petersburg, 1998) [in Russian].Google Scholar
  16. 16.
    Air Resources Laboratory. HYSPLIT Trajectory Model (Electronic Resource), http://ready.arl.noaa.gov/HYSPLIT_traj.php.Google Scholar
  17. 17.
    A. Belova, S. Kirkwood, and D. Murtagh, “Planetary Waves in Ozone and Temperature in the Northern Hemisphere Winters of 2002/2003 and Early 2005,” Ann. Geophys., 27 (2009).Google Scholar
  18. 18.
    T. Birner and H. Bonisch, “Residual Circulation Trajectories and Transit Times into the Extratropical Lowermost Stratosphere,” Atmos. Chem. Phys., 11 (2011).Google Scholar
  19. 19.
    R. D. Bojkov and D. S. Balis, “Characteristics of Episodes with Extremely Low Ozone Values in the Northern Middle Latitudes 1957-2000,” Ann. Geophys., 19 (2001).Google Scholar
  20. 20.
    N. Butchart, “The Brewer-Dobson Circulation,” Rev. Geophys., 52 (2014).Google Scholar
  21. 21.
    P. Eriksson and D. Chen, “Statistical Parameters Derived from Ozonesonde Data of Importance for Passive Remote Sensing Observations of Ozone,” Int. J. Remote Sensing, No. 22, 23 (2002).Google Scholar
  22. 22.
    V. E. Fioletov and T. G. Shepherd, “Seasonal Persistence of Midlatitude Total Ozone Anomalies,” Geophys. Res. Lett., No. 7, 30 (2003).Google Scholar
  23. 23.
    Freie Universitat Berlin. QBO Data Serie, http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/.Google Scholar
  24. 24.
    S. M. Frith, N. A. Kramarova, R. S. Stolarski, et al., “Recent Changes in Total Column Ozone Based on the SBUV Version 8.6 Merged Ozone Data Set,” J. Geophys. Res. Atmos., 119 (2014).Google Scholar
  25. 25.
    J.-U. Grooss and J. M. Russell, “Technical Note: A Stratospheric Climatology for O3, H2O, CH4, NOx, HCl and HF Derived from HALOE Measurements,” Atmos. Chem. Phys., 5 (2005).Google Scholar
  26. 26.
    Japan Meteorological Agency. Stratospheric Circulation, http://ds.data.jma.go.jp/tcc/tcc/products/clisys/ STRAT/.Google Scholar
  27. 27.
    G. Koch, H. Wernli, C. Schweirz, et al., “A Lagrangian Analysis of Stratospheric Ozone Variability and Longterm Trends above Payerne (Switzerland) during 1970-2001,” J. Geophys. Res., No. D19, 107 (2002).Google Scholar
  28. 28.
    J. L. Lean, “Evolution of Total Ozone from 1900 to 2100 Estimated with Statistical Models,” J. Atmos. Sci., 71 (2014).Google Scholar
  29. 29.
    R. D. McPeters and G. J. Labow, “Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms,” J. Geophys. Res., 117 (2012).Google Scholar
  30. 30.
    O. Morgenstern, M. A. Giorgetta, K. Shibata, et al., “Review of the Formulation of Present Generation Stratospheric Chemistry-Climate Models and Associated External Forcings,” J. Geophys. Res., 115 (2010).Google Scholar
  31. 31.
    K. Okamoto, K. Sato, and H. Akiyoshi, “A Study on the Formation and Trend of the Brewer-Dobson Circulation,” J. Geophys. Res., 116 (2011).Google Scholar
  32. 32.
    G. C. Reinsel, A. J. Miller, E. C. Weatherhead, et al., “Trend Analysis of Total Ozone Data for Turnaround and Dynamical Contributions,” J. Geophys. Res., 110 (2005).Google Scholar
  33. 33.
    M. L. Salby and P. F. Callaghan, “Fluctuations of Total Ozone and Their Relationship to Stratospheric Air Motions,” J. Geophys. Res., 98 (1993).Google Scholar
  34. 34.
    S. Solomon, “Stratospheric Ozone Depletion: A Review of Concepts and History,” Rev. Geophys., No. 3, 37 (1999).Google Scholar
  35. 35.
    M. Weber, S. Dikty, J. P. Burrows, et al., “The Brewer-Dobson Circulation and Total Ozone from Seasonal to Decadal Time Scales,” Atmos. Chem. Phys., 11 (2011).Google Scholar
  36. 36.
    V. Wirth, “Quasi-stationary Planetary Waves in Total Ozone and Their Correlation with Lower Stratospheric Temperature,” J. Geophys. Res., 98 (1993).Google Scholar
  37. 37.
    WMO Report No. 47. Scientific Assessment of Ozone Depletion: 2002.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Taifun Research and Production AssociationObninskRussia

Personalised recommendations