Russian Meteorology and Hydrology

, Volume 43, Issue 3, pp 161–167 | Cite as

Validation of Atmospheric Numerical Models Based on Satellite Measurements of Ozone Columns

  • Ya. A. Virolainen
  • Yu. M. Timofeev
  • I. A. Berezin
  • S. P. Smyshlyaev
  • M. A. Motsakov
  • O. Kirner
Article
  • 5 Downloads

Abstract

The time series of ozone columns measured with the SBUV satellite instrument over three subarctic stations (Saint Petersburg, Harestua, and Kiruna) are analyzed. The daily and monthly mean ozone values in the layers of 0–25, 25–60, and 0–60 km are compared with the results of simulations with RSHU and EMAC numerical models for the period of 2000–2015. Model data are in good agreement with satellite data both in general and in the cases of rapid short-term ozone loss. However, there are some differences between the models and measurements as well as between the two considered models. These differences require the more detailed analysis in order to modify model parameters. Experimental data demonstrate the increase in ozone columns in the layer of 25–60 km which amounts to 2.1 ± 0.7, 2.4 ± 0.7, and 1.5 ± 0.8% per decade for Saint Petersburg, Harestua, and Kiruna stations, respectively. The results of numerical simulations do not contradict these estimates.

Keywords

Atmospheric numerical models SBUV satellite measurements atmospheric ozone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. A. Virolainen, Yu. M. Timofeev, A. V. Polyakov, et al., “Comparing Data Obtained from Ground-based Measurements of the Total Contents of O3, HNO3, HCl, and NO2 and from Their Numerical Simulation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 1, 52 (2016)].Google Scholar
  2. 2.
    A. M. Zvyagintsev, N. S. Ivanova, M. P. Nikiforova, et al., “Ozone Content over the Russian Federation in the First Quarter of 2016,” Meteorol. Gidrol., No. 5 (2016) [Russ. Meteorol. Hydrol., No. 5, 41 (2016)].Google Scholar
  3. 3.
    M. P. Nikiforova, P. N. Vargin, A. M. Zvyagintsev, et al., “Ozone Mini-hole over the North of the Urals and Siberia,” Trudy Gidromettsentra Rossii, No. 360 (2016) [in Russian].Google Scholar
  4. 4.
    S. P. Smyshlyaev, Ya. A. Virolainen, M. A. Motsakov, et al., “Interannual and Seasonal Variations in Ozone in Different Atmospheric Layers over Saint Petersburg Based on Observational Data and Numerical Modeling,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 53 (2017) [Izv., Atmos. Oceanic Phys., No. 3, 53 (2017)].Google Scholar
  5. 5.
    P. K. Bhartia, R. D. McPeters, L. E. Flynn, et al., “Solar Backscatter UV (SBUV) Total Ozone and Profile Algorithm,” Atmos. Meas. Tech., 6 (2013).Google Scholar
  6. 6.
    D. P. Dee, S. M. Uppala, A. J. Simmons, et al., “The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).Google Scholar
  7. 7.
    T. Egorova, E. Rozanov, V. Zubov, et al., “Chemistry-climate Model SOCOL: A Validation of the Present-day Climatology,” Atmos. Chem. Phys., 5 (2005).Google Scholar
  8. 8.
    V. Eyring, N. Butchart, D. W. Waugh, et al., “Assessment of Temperature, Trace Species, and Ozone in Chemistry Climate Model Simulations of the Recent Past,” J. Geophys. Res., 111 (2006).Google Scholar
  9. 9.
    P. Jockel, H. Tost, A. Pozzer, et al., “The Atmospheric Chemistry General Circulation Model ECHAM5/MESSy1: Consistent Simulation of Ozone from the Surface to the Mesosphere,” Atmos. Chem. Phys., 6 (2006).Google Scholar
  10. 10.
    D. Pendlebury, D. Plummer, J. Scinocca, et al., “Comparison of the CMAM30 Data Set with ACE-FTS and OSIRIS: Polar Regions,” Atmos. Chem. Phys., 15 (2015).Google Scholar
  11. 11.
    M. M. Rienecker, M. J. Suarez, R. Gelaro, et al., “MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications,” J. Climate, 24 (2011).Google Scholar
  12. 12.
    M. Righi, V. Eyring, K.-D. Gottschaldt, et al., “Quantitative Evaluation of Ozone and Selected Climate Parameters in a Set of EMAC Simulations,” Geosci. Model Dev., 8 (2015).Google Scholar
  13. 13.
    Y. Timofeev, Y. Virolainen, M. Makarova, et al., “Ground-based Spectroscopic Measurements of Atmospheric Gas Composition near Saint Petersburg (Russia),” J. Mol. Spectr., 323 (2016).Google Scholar
  14. 14.
    C. Vigouroux, T. Blumenstock, M. Coffey, et al., “Trends of Ozone Total Columns and Vertical Distribution from FTIR Observations at Eight NDACC Stations around the Globe,” Atmos. Chem. Phys., 15 (2015).Google Scholar
  15. 15.
    W. M. F. Wauben, J. P. F. Fortuin, P. F. J. van Velthoven, and H. M. Kelder, “Comparison of Modeled Ozone Distributions with Sonde and Satellite Observations,” J. Geophys. Res., No. D3, 103 (1998).Google Scholar
  16. 16.
    WMO. Scientific Assessment of Ozone Depletion: 2006. Global Ozone Research and Monitoring Project, Report No. 50 (WMO, Geneva, 2007).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Ya. A. Virolainen
    • 1
  • Yu. M. Timofeev
    • 1
  • I. A. Berezin
    • 1
  • S. P. Smyshlyaev
    • 2
  • M. A. Motsakov
    • 2
  • O. Kirner
    • 3
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.Russian State Hydrometeorological UniversitySt. PetersburgRussia
  3. 3.Steinbuch Center for ComputingKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations