Russian Agricultural Sciences

, Volume 44, Issue 6, pp 582–585 | Cite as

Stochastic Modeling and Estimation of the Probability of Productivity Losses

  • V. P. YakushevEmail author
  • V. V. Yakushev
  • V. M. Bure


Adoption of responsible managerial decisions in the conditions of potentially large or even “catastrophic” economic losses requires, apart from expert evaluation, the obligatory use of objective scientific approaches to the assessment of the possible risks. Such methods allow one to give an objective assessment of the risks in the current or forecasted critical situation. The article proposes a stochastic model for estimation of the productivity losses probability in the crop production in the conditions of various climatic scenarios, including the “bad” and “abnormally bad” seasons. The approach is based on the use of a modified algorithm for estimating the parameters of the finite mixture of distributions to the retrospective information about the productivity of the crop in a given geographic area within the previous years. The adequacy of the model is tested based on the real data. Extensive statistical material is accumulated at Russian agricultural research institutes for implementing the proposed approach in the various soil-climatic zones of the Russian Federation.


climatic risks stochastic modeling finite mixture of distributions estimation of the parameters SEM algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yakushev, V.P., Bure, V.M., and Brunova, T.M., Statistical methods in agrophysics, in Agrofizika ot A.F. Ioffe do nashikh dnei (Agrophysics from A. F. Ioffe to the Present Day), St. Petersburg: AFI, 2002, pp. 319–330.Google Scholar
  2. 2.
    Yakushev, V.P. and Yakushev, V.V., Informatsionnoe obespechenie tochnogo zemledeliya (Information Support for Precision Farming), St. Petersburg: Izd. Peterb. Inst. Yad. Fiz. Ross. Akad. Nauk, 2007.Google Scholar
  3. 3.
    Yakushev, V.P., Karelin, V.V., Bure, V.M., and Parilina, E.M., Soil acidity adaptive control problem, Stochastic Environ. Res. Risk Assess., 2015, vol. 29, no. 6, pp. 1671–1677.CrossRefGoogle Scholar
  4. 4.
    Yakushev, V.P. and Bure, V.M., Methodological approaches to the assessment of the optimal time for carrying out agrotechnological events, Dokl. Ross. S-kh. Akad., 2001, no. 4, pp. 27–30.Google Scholar
  5. 5.
    Yakushev, V.P. and Bure, V.M., Statistical estimation of the distribution of the optimal time for carrying out agrotechnological events, Dokl. Ross. S-kh. Akad., 2002, no. 3, pp. 11–13.Google Scholar
  6. 6.
    Yakushev, V.P., Bure, V.M., Yakushev, V.V., and Bure, A.V., Optimal time interval for conducting agrotechnical measures, Russ. Agric. Sci., 2013, vol. 39, nos. 5–6, pp. 533–536.CrossRefGoogle Scholar
  7. 7.
    Vavitsara, M.E., Sabatier, S., Meng Zhen Kang, Hery Lisy Tiana Ranarijaona, and de Reffye, Ph., Yield analysis as a function of stochastic plant architecture: Case of Spilanthes acmella in the wet and dry season, Comput. Electron. Agric., 2017, vol. 138, pp. 105–116.Google Scholar
  8. 8.
    Pengfei He, Jing Li, and Xin Wang, Wheat harvest schedule model for agricultural machinery cooperatives considering fragmental farmlands, Comput. Electron. Agric., 2018, vol. 145, pp. 226–234.CrossRefGoogle Scholar
  9. 9.
    Reet Poldaru and Juri Roots, Using a nonlinear stochastic model to schedule silage maize harvesting on Estonian farms, Comput. Electron. Agric., 2014, vol. 107, pp. 89–96.Google Scholar
  10. 10.
    Zhang Shiwen, Zhang Lanlan, Li Zishuang, Wang Qingyun, Cui Hongbiao, Sun Zhongxiang, Ge Chang, Liu Huiling, and Huang Yuanfang, Three-dimensional stochastic simulations of soil clay and its response to sampling density, Comput. Electron. Agric., 2017, vol. 142, pp. 273–282.CrossRefGoogle Scholar
  11. 11.
    Johann, A.L., de Araújo, A.G., Delalibera, H.C., and Hirakawa, A.R., Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener, Comput. Electron. Agric., 2016, vol. 121, pp. 420–428.CrossRefGoogle Scholar
  12. 12.
    Jun Diao, Philippe De Reffye, Xiangdong Lei, Hong Guo, and Veronique Letort, Simulation of the topological development of young eucalyptus using a stochastic model and sampling measurement strategy, Comput. Electron. Agric., 2012, vol. 80, pp. 105–114.Google Scholar
  13. 13.
    Harwood, T.D., Al Said, F.A., Pearson, S., Houghtona, S.J., and Hadley, P., Modelling uncertainty in field grown iceberg lettuce production for decision support, Comput. Electron. Agric., 2010, vol. 71, pp. 57–63.Google Scholar
  14. 14.
    Salmon-Monviola, J., Durand, P., Ferchaud, F., Oehler, F., and Sorel, L., Modelling spatial dynamics of cropping systems to assess agricultural practices at the catchment scale, Comput. Electron. Agric., 2012, vol. 81, pp. 1–13.CrossRefGoogle Scholar
  15. 15.
    Mayer, D.G., Walmsley, B.J., McPhee, M.J., Oddy, V.H., Wilkins, J.F., Kinghorn, B.P., Dobos, R.C., and McKiernan, W.A., Integrating stochasticity into the objective function avoids Monte Carlo computation in the optimisation of beef feedlots, Comput. Electron. Agric., 2013, vol. 91, pp. 30–34.CrossRefGoogle Scholar
  16. 16.
    Silva-Villacorta, D., Lopez-Villalobos, N., Blair, H.T., Hickson, R.E., and Macgibbon, A.K., A stochastic farm model to simulate dairy farms and the segregation of cows to produce milk with different concentrations of unsaturated fatty acids, Comput. Electron. Agric., 2016, vol. 125, pp. 29–38.CrossRefGoogle Scholar
  17. 17.
    Benjamin, D., Bruno, B., Vincent, L., Bernard, B., Jean-Pierre, D., and Marie-France, D., Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions, Precis. Agric., 2015, vol. 16, pp. 361–384.CrossRefGoogle Scholar
  18. 18.
    Grifo, A.R.L. and Marques da Silva, J.R., Stochastic simulation of maize productivity: Spatial and temporal uncertainty in order to manage crop risks, Precis. Agric., 2015, vol. 16, pp. 668–689.CrossRefGoogle Scholar
  19. 19.
    Akış, R., Spatial variability of soil solute and saturated hydraulic conductivity affected by undrained water table conditions, Precis. Agric., 2015, vol. 16, pp. 330–359.CrossRefGoogle Scholar
  20. 20.
    McFadden, B.R., Wade, B.B., and Raun, W.R., Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating, Precis. Agric., 2018, vol. 19, pp. 79–92.CrossRefGoogle Scholar
  21. 21.
    Jones, G., Gée, Ch., and Truchetet, F., Modelling agronomic images for weed detection and comparison of crop/weed discrimination algorithm performance, Precis. Agricult., 2009, vol. 10, pp. 1–15.CrossRefGoogle Scholar
  22. 22.
    Aivazyan, S.A., Bukhshtaber, V.M., Enyukov, I.S., and Meshalkin, L.D., Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti. (Spravochnoe izdanie) (Applied Statistics. Classification and Reduction of Dimension. (Handbook Edition)), Moscow: Finansy i statistika, 1989.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. P. Yakushev
    • 1
    Email author
  • V. V. Yakushev
    • 1
  • V. M. Bure
    • 1
    • 2
  1. 1.Agrophysical Research InstituteSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations