Advertisement

Russian Agricultural Sciences

, Volume 44, Issue 6, pp 563–565 | Cite as

Effect of the PGR Genotype on Economically Valuable Traits in Animals of the Holstein Breed

  • E. V. Machulskaya
  • N. V. Kovalyuk
  • V. F. Satsuk
  • Yu. Yu. Shakhnazarova
Animal Husbandry
  • 4 Downloads

Abstract

Genotyping for locus PGR (progesterone receptor gene) of the Holstein servicing bulls (World Wide Sires) was carried out. The frequencies of alleles and genotypes of this locus are given. Significant (P < 0.05) superiority of the homozygous genotype AA of locus PGR was found in relation to the heterozygous genotype AG for several economically valuable traits: PTAM (predicted transmitting ability for milk, 380 points), PL (productive life, by 1.3 months), and FE (feed cost–feeding efficiency index, 37 points). Significant superiority (P < 0.05) of the homozygous genotype GG over the heterozygous genotype AG for the PL trait was also found, by 1.2 months. The obtained data can be used for marker-dependent breeding.

Keywords

Holstein breed sires progesterone receptor gene (PGR) polymorphism indices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zinov'eva, N.A., Klenovitskii, P.M., Gladyr’, E.A., and Nikishov, A.A., Sovremennye metody geneticheskogo kontrolya selektsionnykh protsessov i sertifikatsiya plemennogo materiala v zhivotnovodstve (Modern Methods of Genetic Control of Breeding Processes and Certification of Breeding Material in Animal Husbandry), Moscow: Ross. Univ. Druzhby Nar., 2008.Google Scholar
  2. 2.
    Kovalyuk, N.V., Satsuk, V.F., Machul’skaya, E.V., Shakhnazarova, Yu.Yu., and Volchenko, A.E., Markerassociated breeding of sires as a factor in increasing the efficiency of the dairy cattle breeding industry, in Biotekhnologiya: Sostoyanie i perspektivy razvitiya. Mater. VIII Moskovskogo mezhd. kongr. ZAO “Ekspobiokhim-tekhnologii” (Biotechnology: Current Status and Development Prospects. Proc. VIII Moscow Int. Congr. ZAO Expo-Biochem-Technology), Moscow, 2015, pp. 466–467.Google Scholar
  3. 3.
    Gellersen, B., Fernandes, M.S., and Brosens, J.J., Non-genomic progesterone actions in female reproduction, Hum. Reprod. Update, 2009, no. 15, pp. 119–138.CrossRefGoogle Scholar
  4. 4.
    Luciano, A.M., Corbani, D., Lodde, V., Tessaro, I., Franciosi, F., Peluso, J.J., and Modina, S., Expression of progesterone receptor membrane component-1 in bovine reproductive system during estrous cycle, Eur J. Histochem., 2011, no. 55, p. 27.CrossRefGoogle Scholar
  5. 5.
    Luciano, A.M., Lodde, V., Franciosi, F., Ceciliani, F., and Peluso, J.J., Progesterone receptor membrane component 1 expression and putative function in bovine oocyte maturation, fertilization, and early embryonic development, Reproduction, 2010, no. 140, pp. 663–672.CrossRefGoogle Scholar
  6. 6.
    Yang, W.C., et al., Association analysis between variants in bovine progesterone receptor gene and superovulation traits in Chinese Holstein cows, Reprod. Dom. Anim., 2011, no. 46, pp. 1029–1034.CrossRefGoogle Scholar
  7. 7.
    Conneely, O.M., Mulac-Jericevic, B., Lydon, J.P., and De Mayo, F.J., Reproductive functions of the progesterone receptor isoforms: Lessons from knock-out mice, Mol. Cell Endocrinol., 2001, vol. 179, nos. 1–2, pp. 97–103.CrossRefGoogle Scholar
  8. 8.
    Golikov, A.N., Bazanova, N.U., Kozhebekov, Z.K., et al., Fiziologiya sel’skokhozyaistvennykh zhivotnykh (Physiology of Farm Animals), Moscow: Agropromizdat, 1991, 3rd ed.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. V. Machulskaya
    • 1
  • N. V. Kovalyuk
    • 1
  • V. F. Satsuk
    • 1
  • Yu. Yu. Shakhnazarova
    • 1
  1. 1.Krasnodar Scientific Center for Zootechnology and VeterinaryKrasnodarRussia

Personalised recommendations