Coke and Chemistry

, Volume 61, Issue 10, pp 408–412 | Cite as

Mechanical and Thermal Sensitivity of Mixtures of Ammonium Nitrate with Combustible Hydrocarbons

  • N. I. AkininEmail author
  • A. Ya. VasinEmail author
  • A. V. Dubovik
  • E. B. Anosova
  • G. G. GadzhievEmail author
  • A. N. Shushpanov
  • S. D. Viktorov
  • A. E. Frantov


Two explosive compositions ISU-4K and ISU-5R based on ammonium nitrate with added coke, diesel fuel, and rubber crumbs are tested so as to establish their sensitivity to mechanical and thermal perturbations. The flash point corresponding to 60-s delay is established. The kinetic parameters of thermal disintegration of the explosives are determined. The information obtained may be used in compiling standard documents (of GOST, OST, TU, VTU, and other types) and writing industrial regulations.


explosives ammonium nitrate coke fines rubber crumbs thermal analysis flash point activation energy impact sensitivity shear sensitivity 



  1. 1.
    Gadzhieva, E.P., Frantov, A.E., Shushpanov, A.N., et al., Evaluation of the sensitivity of some compositions based on ammonium nitrate to thermal effects, Materialy III mezhdunarodnoi nauchno-prakticheskoi konferentsii molodykh uchenykh po problemam tekhnosfernoi bezopasnosti (Proc. III Int. Sci.-Pract. Conf. Of young Scientists ob the Problems of Technosphere Security), Moscow: Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2018, pp. 33–36.Google Scholar
  2. 2.
    Babkina, T.S., Phase equilibria in binary and ternary systems based on ammonium nitrate and urea, Cand. Sci. (Chem.) Dissertation, Moscow, 2014, pp. 75–79.Google Scholar
  3. 3.
    Wendlandt, W.W., Thermal Methods of Analysis, New York: Wiley, 1974.Google Scholar
  4. 4.
    Kissinger, H.E., Reaction kinetics in differential thermal analysis, Anal. Chem., 1957, vol. 29, no. 11, pp. 1702–1706.CrossRefGoogle Scholar
  5. 5.
    Vasin, A.Ya., Gadzhiev, G.G., Raikova, V.M., et al., The explosion hazard of some organic compounds with explosion-bearing groups, Khim. Prom. Segodnya, 2016, no. 12, pp. 51–55.Google Scholar
  6. 6.
    Platonova, S.A., Shushpanov, A.N., Vasin, A.Ya., and Gadzhiev, G.G., The fire and explosion hazard properties of 5-aminolevulinic acid hydrochloride and its synthesis intermediate, Usp. Khim. Khim. Tekhnol., 2017, vol. 31, no. 13, pp. 78–80.Google Scholar
  7. 7.
    GOST (State Standard) 2-2013: Ammonium Nitrate. Specifications, Moscow: Standartinform, 2013.Google Scholar
  8. 8.
    Orlenko, L.P., Fizika vzryva (Physics of Explosion), Moscow: Fizmatlit, 2002.Google Scholar
  9. 9.
    GOST (State Standard) 4545-88: Explosives, High. Sensitivity Characteristics Determination for Impact, Moscow: Izd. Standartov, 1988.Google Scholar
  10. 10.
    Kondrikov, B.N., The sensitivity of solid explosives to mechanical stress, in Vzryvchatye materially i pirotekhnika (Explosives and Pyrotechnics), Moscow: Tsentr. Nauchno-Issled. Inst. Nauchno-Tekh. Inf., Kon”yuktury, Povysh. Kvalifikatsii, 1994, pp. 12–25.Google Scholar
  11. 11.
    GOST (State Standard) R 50835-95: High Explosives. Methods for Determination of Sensitivity Characteristics to Friction at Impact Displacement, Moscow: Izd. Standartov, 1996.Google Scholar
  12. 12.
    Dubovik, A.V., Chuvstvitel’nost’ tverdykh vzryvchatykh system k udaru (Sensitivity of Solid Explosive Systems to Impact), Moscow: Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2011.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Mendeleev Russian Chemical and Technological UniversityMoscowRussia
  2. 2.Mel’nikov Research Institute of Integrated Mineral Development, Russian Academy of SciencesMoscowRussia

Personalised recommendations