Some Formulas for the Generalized Analytic Feynman Integrals on the Weiner Space

  • H. S. ChungEmail author
  • D. SkougEmail author
  • S. J. ChangEmail author
Real and Complex Analysis


In this paper, we define a new concept of analytic Feynman integral on theWiener space, which is called the generalized analytic Feynman integral, to explain various physical circumstances. Furthermore, we evaluate the generalized analytic Feynman integrals for several important classes of functionals.We also establish various properties of these generalized analytic Feynman integrals. We conclude the paper by giving several applications involving the Cameron-Storvick theorem and quantum mechanics.


Schrödinger equation diffusion equation (non)harmonic oscillator Feynman-Kac formula Cameron-Storvick theorem 

MSC2010 numbers

28C20 60J65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.H. Cameron and D.A. Storvick, “Feynman integral of variation of functionals”, in: Gaussian Random Fields, World Scientific, Singapore, 144–157, 1980.zbMATHGoogle Scholar
  2. 2.
    R.H. Cameron and D.A. Storvick, “Some Banach algebras of analytic Feynman integrable functionals”, Lecture Notes in Math., 798, 18–67, 1980.MathSciNetCrossRefGoogle Scholar
  3. 3.
    R.H. Cameron and D.A. Storvick, “Analytic Feynman integral solutions of an integral equation related to the Schrödinger equation”, J. Anal.Math., 38, 34–66, 1980.CrossRefGoogle Scholar
  4. 4.
    R.H. Cameron and D.A. Storvick, “Relationships between the Wiener integral and the analytic Feynman integral”, Rend. Circ.Mat. Palermo (2) Suppl., 17, 117–133, 1987.MathSciNetzbMATHGoogle Scholar
  5. 5.
    R.P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Rev.Modern Phys., 20, 115–142, 1948.MathSciNetCrossRefGoogle Scholar
  6. 6.
    K.S. Chang, G.W. Johnson and D.L. Skoug, “The Feynman integral of quadratic potentials depending on two time variables”, Pacific J. Math., 122, 11–33, 1986.MathSciNetCrossRefGoogle Scholar
  7. 7.
    S.J. Chang, H.S. Chung and D. Skoug, “Convolution products, integral transforms and inverse integral transforms of functionals in L 2(C 0[0, T])”, Integral Transforms Spec. Funct., 21, 143–151, 2010.MathSciNetCrossRefGoogle Scholar
  8. 8.
    S.J. Chang, J.G. Choi and H.S. Chung, “The approach to solution of the Schrödinger equation using Fourier-type functionals”, J. Korean Math. Soc., 50, 259–274, 2013.MathSciNetCrossRefGoogle Scholar
  9. 9.
    H.S. Chung and V.K. Tuan, “Fourier-type functionals on Wiener space”, Bull. Korean Math. Soc. 49, 609–619, 2012.MathSciNetCrossRefGoogle Scholar
  10. 10.
    H.S. Chung and V.K. Tuan, “A sequential analytic Feynman integral of functionals in L 2(C 0[0, T])”, Integral Transforms Spec. Funct., 23, 495–502, 2012.MathSciNetCrossRefGoogle Scholar
  11. 11.
    G.W. Johnson and D.L. Skoug, “Scale-invariant measurability in Wiener space”, Pacific J.Math., 83, 157–176, 1979.MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Kac, “On distributions of certain Wiener functionals”, Trans. Amer. Math. Soc., 65, 1–13, 1949.MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Kac, “On Some connections between probability theory and differential and integral equations”, Proc. Second Berkeley Symposium on Mathematical Statistic and Probability (ed. J. Neyman), Univ. of California Press, Berkeley, 189–215, 1951.Google Scholar
  14. 14.
    M. Kac, Probability, Number theory, and Statistical Physics K. Baclawski and M.D. Donsker, eds., Mathematicians of Our Time 14, (Cambridge,Mass.-London, 1979).Google Scholar
  15. 15.
    M. Kac, Integration in Function Spaces and Some of its Applications, Lezione Fermiane (Scuola Normale Superiore, Pisa, 1980).Google Scholar
  16. 16.
    I.A. Kongioumtzoglou and P.D. Spanos, “An analytical Wiener path integral technique for non-stationary response determination of nonlinear oscillator”, Prob. Engineering Mech., 28, 125–131, 2012.CrossRefGoogle Scholar
  17. 17.
    E. Merzbacher, Quantum Mechanics (Wiley, NY, 1998).zbMATHGoogle Scholar
  18. 18.
    S. Mazzucchi, Mathematical Feynman path integrals (World Scientific, Singapore, 2009).CrossRefGoogle Scholar
  19. 19.
    C.S. Park, M.G. Jeong, S.K. Yoo, and D.K. Park, “Double-well potential: The WKB approximation with phase loss and anharmonicity effect”, Phys. Rev. A, 58, 3443–3447, 1998.CrossRefGoogle Scholar
  20. 20.
    B. Simon, Functioanl Integration and Quantum Physics (Academic Press, New York, 1979).Google Scholar
  21. 21.
    S. Albeverio and S. Mazzucchi, “Feynman path integrals for polynomially growing potentials”, J. Funct. Anal., 221, 83–121, 2005.MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Albeverio and S. Mazzucchi, “The time-dependent quadratic oscillator-a Feynman path integral approach”, J. Funct. Anal., 238, 471–488, 2006.MathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Zastawniak, “The equivalence of two approaches to the Feynman integral for the anharmonic oscillator”, Univ. Iagel. Acta Math., 28, 187–199, 1991.MathSciNetzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Dankook UniversityCheonanKorea
  2. 2.University of Nebraska-LincolnLincolnUSA

Personalised recommendations