Advertisement

A Moment Condition and Non-synthetic Diagonalizable Operators on the Space of Functions Analytic on the Unit Disk

  • S. M. SeubertEmail author
Differential Equations
  • 4 Downloads

Abstract

Examples are given of (continuous, linear) operators on the space of functions analytic on the open unit disk in the complex plane having the monomials as eigenvectors, but which fail spectral synthesis (that is, which have closed invariant subspaces which are not the closed linear span of any collection of eigenvectors).

Keywords

Invariant subspace spectral synthesis diagonal operator Borel series moment condition 

MSC2010 numbers

30B10 30B50 47B36 47B38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wermer, “On invariant subspaces of normal operators”, Proc. Amer.Math. Soc., 3, 270–277, 1952.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Wolff, “Sur les series Ak/(z − zk)”, Comptes Rendus, 173, 1057–1058, 1327.1328, 1921.Google Scholar
  3. 3.
    N. K. Nikol’skiĭ, Operators, Functions, and Systems: An Easy Reading, Vol. I Mathematical surveys and monographs (Vol. 92, AmericanMathematical Society, Providence, RI, 2002).Google Scholar
  4. 4.
    L. Brown, A. Shields, and K. Zeller, “On absolutely convergent exponential sums”, Trans.Amer.Math. Soc., 96, 162–183, 1960.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    D. Sarason, “Invariant subspaces and unstarred operators algebras”, Pacific J.Math., 17, 511–517, 1966.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D. Sarason, “Weak–star density of polynomials”, J.ReineAngew.Math., 252, 1–15, 1972.MathSciNetzbMATHGoogle Scholar
  7. 7.
    J. E. Scroggs, “Invariant subspaces of normal operators”, DukeMath. J., 26, 95–112, 1959.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    N. K. Nikol’skiĭ, “The present state of of the spectral analysis–synthesis problem I”, in Fifteen Papers on Functional Analysis (Amer.Math. Soc. Transl.), 124, 97–129, 1984.Google Scholar
  9. 9.
    A. F. Leontev, Exponential Series (Nauka, Moscow, 1976).Google Scholar
  10. 10.
    Yu. F. Korobeinik, “Representing systems”, Russian Math. Surveys, 36, 75–137, 1981.CrossRefzbMATHGoogle Scholar
  11. 11.
    T. A. Leont’eva, “Representations of analytic functions by series of rational functions”, Math. Notices, 2, 695–702, 1968.CrossRefzbMATHGoogle Scholar
  12. 12.
    B. M. Makarov, “On the moment problem in certain function spaces”, Doklady Akad. Nauk SSSR, 127, 957–960, 1959.MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. Denjoy, “Sur les series de fractions rationelle”, Bull. Soc. Math. France, 52, 418–434, 1924.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    W. T. Ross and H. S. Shapiro, Generalized Analytic Continuation, University Lecture Series 25 (AmericanMathematical Society, Providence, RI, 2002).Google Scholar
  15. 15.
    E. Borel, “Remarques sur la note deM.Wolff”, C.R. Acad. Sci.Paris, 173, 1056–1057, 1921.Google Scholar
  16. 16.
    T. Carleman, “Sur les series Av z−av”, C.R.Acad. Sci.Paris, 174, 588–591, 1922.zbMATHGoogle Scholar
  17. 17.
    A. A. Gonchar, “On quasianalytic continuation of analytic functions through a Jordan arc”, Soviet Math. Dokl., 7, 213–216, 1966.zbMATHGoogle Scholar
  18. 18.
    R.V. Sibilev, “Uniqueness theorem forWolff–Denjoy series”, St. PetersburgMath. J., 7, 145–168, 1996.MathSciNetGoogle Scholar
  19. 19.
    I. N. Deters and S. M. Seubert, “Spectral synthesis of diagonal operators on the space of functions analytic on a disk”, J.Math. Anal. Appl., 334, 1209–1219, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    J. M. Anderson, D. Khavinson, H. S. Shapiro, “Analytic continuation of Dirichlet series”, Rev. Mat. Iberoamerica, 11, 453–476, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    K. Overmoyer, “Applications of entire function theory to the spectral synthesis of diagonal operators”, a dissertation, Bowling Green State University, 2011.Google Scholar
  22. 22.
    B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monogr., 150, (AMS, Providence, RI, 1996).CrossRefGoogle Scholar
  23. 23.
    T.W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics (Springer, New York, 2001).Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Bowling Green State UniversityBowling GreenUSA

Personalised recommendations