Advertisement

On Some Subclasses of Delta-Subharmonic Functions of Bounded Type in the Disc

  • J. E. RestrepoEmail author
Real and Complex Analysis
  • 5 Downloads

Abstract

The paper gives the delta-subharmonic extension of the part of the factorization theory of M. M. Djrbashian - V. S. Zakaryan, which relates with the descriptive representations of the classes N{ω} of functions meromorphic in the unit disc, contained in Nevanlinna’s class N of functions of bounded type.

Keywords

Delta-subharmonic function Green potential charges 

MSC2010 numbers

31A05 31A20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Džrbašjan, “Theory of Factorization and Boundary Properties of Functions Meromorphic in the Disc”, in: Proc. International Congress of Mathematicians (Vancouver 1974), Vol. 2, Canad. Math. Congress, Montreal, 1975.Google Scholar
  2. 2.
    M. M. Djrbashian and V. S. Zakaryan, Classes and Boundary Properties of Functions Meromorphic in the Disc (Nauka, Moscow, 1993).Google Scholar
  3. 3.
    A. M. Jerbashian and J. E. Restrepo, “On some classes of harmonic functions with nonnegative harmonic majorants in the half–plane”, Journal of ContemporaryMathematical Analysis (National Academy of Sciences of Armenia), 51 (2), 79–89, 2016.MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. M. Jerbashian and J. E. Restrepo, “On some subclasses of delta–subharmonic functions with nonnegative harmonic majorants in the half–plane”, Journal of Contemporary Mathematical Analysis (National Academy of Sciences of Armenia), 51 (3), 134–147, 2016.CrossRefzbMATHGoogle Scholar
  5. 5.
    A.M. Jerbashian, “An Extension of the Factorization Theory of M.M. Djrbashian”, Journal of Contemporary Mathematical Analysis (National Academy of Sciences of Armenia), 30 (2), 39–61, 1995.zbMATHGoogle Scholar
  6. 6.
    A.M. Jerbashian, “On Embedding of Nevanlinna Type Classes N?”, Izv. RAN, 63 (4), 59–78, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. Dunford, J. I. Schwarz, Linear operators. Vol. I. (Interscience Publishers, New York. 1971).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute ofMathematicsUniversity of AntioquiaMedellinColombia

Personalised recommendations