Advertisement

Mathematical Description of the Diffusion Nature of Swelling and Shrinking of Erythrocytes at Radiation Injury

  • H. P. SargsyanEmail author
  • A. H. Sargsyan
  • A. M. Danielyan
Article
  • 1 Downloads

Abstract

The mathematical, formal-kinetic description of the diffusion nature of observed dimensional shifts in erythrocytes (the swelling and shrinkage) at early post-radiation period is proposed, and the quasi-chemical model of the diffusion diode is constructed for the transfer processes of micro-particles (including the water molecules) through biological membranes.

Keywords

diffusion transfer erythrocytes swelling shrinkage biological membranes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ting, T.P. and Zircle, R.E., J. Cell Comp. Physiol. B, 1940, vol. 16, p. 197.CrossRefGoogle Scholar
  2. 2.
    Patrick, G., Mammalian cell membranes. Watterworth etc., 1977, vol. 5, p. 72.Google Scholar
  3. 3.
    Fomenko, B.S. and Akoyev, M.I., Uspekhi sovrem. Biologii (Advances in Current Biology). 1984, vol. 97(1), p. 146.Google Scholar
  4. 4.
    Krupin, V.D., Gorbenko, G.P., et al., Biopolimery i kletka (Biopolymers and Cell), 1994, vol. 10(1), p. 90.Google Scholar
  5. 5.
    Tarumov, R.A. and Antushevich, A.A., Vestnik novykh meditsinskikh tekhnologiy (Journal of New Medical Technologies). 2013, vol. XX(2), p. 223.Google Scholar
  6. 6.
    Bresciani, F., Auricchio, F., and Fiore, C., Radiat. Res., 1964, vol. 21(3), p. 394.ADSCrossRefGoogle Scholar
  7. 7.
    Polivoda, B.I., Konev, A.B., and Popov, G.A., Biofizicheskiye aspekty radiatsionnogo porazheniya biomembran (Biophysical aspects of radiation damage of biomembranes), Moscow: Energoatomizdat, 1990.Google Scholar
  8. 8.
    Dvoretskiy, A.I., Ayrapetyan, S.N., Shainskaya, A.M., and Chebotarev, Ye.Ye., Transmembrannyy perenos ionov pri deystvii ioniziruyushchey radiatsii na organizm (Transmembrane ion transfer under the action of ionizing radiation on the body). Kiyev: Nauk. dumka, 1990.Google Scholar
  9. 9.
    Bresciani, F., Auricchio, F., and Fiore, C., Nature, 1962, vol. 196, no. 4850, p. 186.ADSCrossRefGoogle Scholar
  10. 10.
    Sheppard, C.W. and Gen, G.E.J., Phyziol, 1951, vol. 34, p. 691.Google Scholar
  11. 11.
    Teorell, T., Proc. N. A. S. USA, 1935, vol. 21, p. 152.ADSCrossRefGoogle Scholar
  12. 12.
    Teorell, T., The Journal of General Physiology, 1937, vol. 21, p. 107.CrossRefGoogle Scholar
  13. 13.
    Liu, L., Cherstvy, A.G., and Metzler, R., J. Phys. Chem. B, 2017, vol. 121, p. 1284.CrossRefGoogle Scholar
  14. 14.
    Metzler, R., Jeon, J.-H., and Cherstvy, A.G., Biochimica et Biophysica Acta, 2016, vol. 1858, p. 2451.CrossRefGoogle Scholar
  15. 15.
    Saxton, M.J., Biophys. J., 2007, vol. 92, p. 1178.ADSCrossRefGoogle Scholar
  16. 16.
    Krapf, D., Curr. Top. Membr., 2015, vol. 75, p. 167.CrossRefGoogle Scholar
  17. 17.
    Sarkisyan, G.P., Bagdasaryan, N.S., Sarkisyan, A.G., and Hlebopros, R.G., XV All-Russian Seminar ‘Modeling of Nonequilibrium Systems–2012’, Krasnoyarsk, 2012, p. 153.Google Scholar
  18. 18.
    Tarusov, B.N., Pervichnyye protsessy luchevogo porazheniya (Primary Radiation Processes), Moscow: Gosatomizdat, 1962.Google Scholar
  19. 19.
    Gorban, A.N. and Sargsyan, H.P., Kinetika i kataliz (Kinetics and catalysis), 1986, vol. 27, p. 527.Google Scholar
  20. 20.
    Gorban, A.N., Sargsyan, H.P., Wahab, H.A., and Math, J., Model. Nat. Phenom, 2011, vol. 6(5), p. 184.MathSciNetCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • H. P. Sargsyan
    • 1
    Email author
  • A. H. Sargsyan
    • 1
  • A. M. Danielyan
    • 1
  1. 1.Institute of Chemical Physics Named After A. Nalbandyan, NAS of ArmeniaYerevanArmenia

Personalised recommendations