Estimation of the Thermal Expansion Coefficient of Graphene in the Temperature Range of 100–700°K

  • A. V. YeganyanEmail author
  • E. P. Kokanyan
  • N. E. Kokanyan
  • M. Aillerie
  • T. Aubert


In this paper, by an analogy with the 3D-systems, and because of the analysis of the dimensionalities of the variables involved, an expression is derived in the quasi-harmonic approximation that allows one to estimate the linear thermal expansion coefficient for a single-layered graphene (which represents the 2D-system) at the temperatures close to the room temperature. It is shown that compared to the other methods to evaluate the thermal expansion coefficient of graphene at the room temperatures (the molecular dynamics method or the method of approximation with the aid of nonequilibrium Green’s function, for which the obtained results differ from experimentally measured values at least by 7%), the accuracy of the value obtained by the suggested expression is 5 times higher (the discrepancy from the measured values figures up to 1.4%).


thermal expansion graphene unit cell parameter Debye temperature quasiharmonic approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Curl, R.F., Rev. Mod. Phys., 1997, vol. 69, p. 691.ADSCrossRefGoogle Scholar
  2. 2.
    Iijima, S., Nature, 1991, vol. 354, p. 56.ADSCrossRefGoogle Scholar
  3. 3.
    Morozov, S.V., Novoselov, K.S., and Geim, A.K., Physics-Uspekhi, 2008, vol. 51(7), p. 744.ADSCrossRefGoogle Scholar
  4. 4.
    Mounet, N. and Marzari, N., Phys. Rev. B, 2005, vol. 71, p. 205214.ADSCrossRefGoogle Scholar
  5. 5.
    Margaryan, N., Kokanyan, N., and Kokanyan, E., Journal of Saudi Chemical Society, 2018, vol. 85, p. 30502.Google Scholar
  6. 6.
    Eletskii, A.V., Iskandarova, I.M., Knizhnik, A.A., and Krasikov, D.N., Phys. Usp., 2011, vol. 54(3), p. 227.ADSCrossRefGoogle Scholar
  7. 7.
    Zakharchenko, K.V., Katsnelson, M.I., and Fasolino, A., Phys. Rev. Lett., 2009, vol. 102, p. 046808.ADSCrossRefGoogle Scholar
  8. 8.
    Jiang, J.W., Wang, J.S., and Li, B., Phys. Rev. B., 2009, vol. 80, p. 205429.ADSCrossRefGoogle Scholar
  9. 9.
    Pozzo, M., Alfe, D., Lacovig, P., Hofmann, P., Lizzit, S., and Baraldi, A., Phys. Rev. Lett., 2011, vol. 106, p. 135501.ADSCrossRefGoogle Scholar
  10. 10.
    Bao, W., Miao, F., Chen, Z., Zhang, H., Jang, W., Dames, C., and Lau, N., Nat. Nanotechnol., 2009, vol. 4(9), p. 562.ADSCrossRefGoogle Scholar
  11. 11.
    Davydov, S.Y. and Sabirova, G., Technical Physics Letters, 2011, vol. 37, p. 515.ADSCrossRefGoogle Scholar
  12. 12.
    Landau, L.D. and Lifshitz, E.M., Statistical Physics, 3rd Edition, Elsevier, 1980.zbMATHGoogle Scholar
  13. 13.
    Yeganyan, A.V., Kuzanyan, A.S., and Stathopoulos, V.N., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 61.CrossRefGoogle Scholar
  14. 14.
    Yeganyan, A.V., Kokanyan, E.P., Hovhannesyan, K.L., Butaeva, T.I., and Ovsepyan, L.E., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 152.ADSCrossRefGoogle Scholar
  15. 15.
    Rech, S., Jantoljak, H., and Thomsen, C., Phys. Rev., V. 61, p.13389, (2000).CrossRefGoogle Scholar
  16. 16.
    Brazier, R.A., Kochayev, A.I., and Meftahundinov, R.M., Grafeny i ikh fizicheskiye svoystva (Graphenes and their physical properties), UlGTU, 2016.Google Scholar
  17. 17.
    Xie, Y., Xu, Z., Cheng, Z., Hashemi, N., Deng, C., and Wang, X., Nanoscale, 2015, vol. 7, p. 10101.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. V. Yeganyan
    • 1
    • 2
    Email author
  • E. P. Kokanyan
    • 1
    • 2
  • N. E. Kokanyan
    • 3
    • 4
  • M. Aillerie
    • 3
    • 4
  • T. Aubert
    • 3
    • 4
  1. 1.Armenian State Abovyan Pedagogical UniversityYerevanArmenia
  2. 2.Institute for Physical ResearchNAS of ArmeniaAshtarakArmenia
  3. 3.Lorraine UniversityMetzFrance
  4. 4.CentraleSupélecParis-Saclay UniversitySaint-AubinFrance

Personalised recommendations