Advertisement

Impedance Spectroscopy Analysis of Orthorhombic DyMnO3 Ceramics

  • H. Lu
  • W. WangEmail author
Article
  • 2 Downloads

Abstract

Orthorhombic DyMnO3 ceramics were synthesized by means of standard high-temperature solid-state reaction technique. Impedance spectroscopy analysis (complex impedance Z* and complex modulus M*) were performed by using the nondestructive complex impedance spectroscopy technique in the frequency range of 100–10 MHz at different temperatures. The impedance spectroscopic plots were used to discern the intrinsic DyMnO3 grain and grain boundary contributions to the dielectric responses. The radii of semicircles in Z″ vs. Z′ plot (Z′ and Z″ are real and imaginary parts of Z*) increased with decreasing temperature, which suggest the increased grain resistance. Similarly, the radii of semicircles in M″ vs. M′ plot (M′ and M″ are real and imaginary parts of M*) suggest that the grain capacitance increased as the temperature decreased. The resistance and capacitance of grain boundaries seem to be independent of the investigated temperatures. The dielectric response from electrodes with demarking frequency was extracted from the presentation of Z′ vs. Z″/f, where f is the frequency of the applied field.

Keywords

ceramic dielectric properties impedance analysis resistivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eerenstein, W., Mathur, N.D., and Scott J.F., Nature, 2006, vol. 442, p. 759.ADSCrossRefGoogle Scholar
  2. 2.
    Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y., Nature, 2003, vol. 426, p. 55.ADSCrossRefGoogle Scholar
  3. 3.
    Lottermoser, T., Lonkai, T., Amann, U., Hohlwein, D., Ihringer, J., and Fiebig, M., Nature, 2004, vol. 430, p. 541.ADSCrossRefGoogle Scholar
  4. 4.
    Wan, S.L., He, L.M., Xiang, J.Y., Wang, Z.G., Xing, R., Zhang, X.F., Lu, Y., and Zhao, J.J., Acta Phys. Sin., 2014, vol. 63, p. 237501.Google Scholar
  5. 5.
    Harikrishnan, S., Roßler, S., Kumar, C.M.N., Bhat, H.L., Roßler, U.K., Wirth, S., Steglich, F., and Elizabeth, S., J. Phys.: Condens. Matter, 2009, vol. 21, p. 096002.ADSGoogle Scholar
  6. 6.
    Yu, V., Ivanov, A.A., Mukhin, A.S., Prokhorov, A.M., et. al., Phys. Solid State, 2006, vol. 48, p. 1726.ADSCrossRefGoogle Scholar
  7. 7.
    Jandl, S., Mansouri, S., Mukhin, A.A., YuIvanov, V., Balbashov, A., Gospodino, M.M., Nekvasil, V., and Orlita, M., J. Magn. Magn. Mater., 2011, vol. 323, p. 1104.ADSCrossRefGoogle Scholar
  8. 8.
    Yadagiri, K., Nithya, R., Shukl, N., and Satya, A.T., J. Alloy. Compd., 2017, vol. 695, p. 2959.CrossRefGoogle Scholar
  9. 9.
    Sinclair, D.C., and West, A.R., J. Appl. Phys., 1989, vol. 66, p. 3850.ADSCrossRefGoogle Scholar
  10. 10.
    Hodge, I.M., Ingram, M.D., and West, A.R., J. Electroanal. Chem., 1975, vol. 58, p. 429.CrossRefGoogle Scholar
  11. 11.
    Kumar, N.P., and Reddy, P.V., Mater. Lett., 2014, vol. 122, p. 292.CrossRefGoogle Scholar
  12. 12.
    Cui, Y., Wang, C., Cao, B., Solid State Commun., 2005, vol. 133, p. 641.ADSCrossRefGoogle Scholar
  13. 13.
    Brinks, H.W., Rodriguez–Carvajal, J., Fjellvag, H., Kjekshus, A., Hauback, B.C., Phys. Rev. B, 2001, vol. 63, p. 094411.ADSCrossRefGoogle Scholar
  14. 14.
    Abrantes, J.C.C., Labrincha, J.A., Frade, J.R., Mater. Res. Bull., 2000, vol. 35, p. 727.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Opto-Electronic Information Science and TechnologyYantai UniversityYantaiP.R. China

Personalised recommendations