Advertisement

Nonlinear Optical Properties of Cylindrical Quantum Dot with Kratzer Confining Potential

  • D. A. BaghdasaryanEmail author
  • E. S. Hakobyan
  • D. B. Hayrapetyan
  • H. A. Sarkisyan
  • E. M. Kazaryan
Article
  • 3 Downloads

Abstract

Electronic states are considered in a cylindrical quantum dot with the Kratzer confining potential in the axial direction. In this system, the nonlinear optical rectification and second harmonic generation for intraband transitions are studied theoretically. Analytical expressions are calculated for the energy spectrum of the wave functions, as well as for the matrix elements. The dependences of the coefficients of the optical rectification and the second harmonic on the incident photon energy are obtained. The nonmonotonic behavior of the dependences of the peaks heights of the optical rectification coefficients depending on the half width and depth of the Kratzer confining potential in the axial direction is demonstrated.

Keywords

cylindrical quantum dot Kratzer potential optical rectification second harmonic generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bimberg, D., Grundmann, M., and Ledentsov, N.N., Quantum dot heterostructures, John Wiley & Sons, 1999.Google Scholar
  2. 2.
    Kazaryan, E.M. and Petrosyan, S.G., Physical principles of semiconductor nanoelectronics, Yerevan: RAU, 2005.Google Scholar
  3. 3.
    Warburton, R.J., Schulhauser, C., Haft, D., Schäflein, C., Karrai, K., Garcia, J.M., Schoenfeld, W., and Petroff, P.M., Physical Review B, 2002, vol. 65, p. 113303.ADSCrossRefGoogle Scholar
  4. 4.
    Cao, G., Nanostructures and nanomaterials: synthesis, properties and applications, Imperial college press, 2004.CrossRefGoogle Scholar
  5. 5.
    Caruge, J.M., Halpert, J.E., Wood, V., Bulović, V., and Bawendi, M.G., Nature photonics, 2008, vol. 2, p. 247.CrossRefGoogle Scholar
  6. 6.
    Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., Optics Communications, 2016, vol. 371, p. 138.ADSCrossRefGoogle Scholar
  7. 7.
    Zhu, J.L., Xiong, J.J., and Gu, B.L., Physical Review B, 1990, vol. 41, p. 6001.ADSCrossRefGoogle Scholar
  8. 8.
    Cantele, G., Piacente, G., Ninno, D., and Iadonisi, G., Physical Review B, 2002, vol. 66, p. 113308.ADSCrossRefGoogle Scholar
  9. 9.
    Hayrapetyan, D.B., J. Contemp. Phys. (Armenian Ac. Sci.), 2007, vol. 42, p. 292.ADSCrossRefGoogle Scholar
  10. 10.
    Vahdani, M.R.K. and Rezaei, G., Physics Letters A, 2010, vol. 374, p. 637.ADSCrossRefGoogle Scholar
  11. 11.
    Atoyan, M.S., Kazaryan, E.M., and Sarkisyan, H.A., Physica E: Low–dimensional Systems and Nanostructures, 2004, vol. 22, p. 860.ADSCrossRefGoogle Scholar
  12. 12.
    Atoyan, M.S., Kazaryan, E.M., and Sarkisyan, H.A., Physica E: Low–dimensional Systems and Nanostructures, 2006, vol. 31, p. 83.ADSCrossRefGoogle Scholar
  13. 13.
    Woggon, U, Optical properties of semiconductor quantum dots, Springer, 1997.Google Scholar
  14. 14.
    Schmitt–Rink, S.D.A.B.M., Miller, D.A.B., and Chemla, D.S., Physical Review B, 1987, vol. 35, p. 8113.ADSCrossRefGoogle Scholar
  15. 15.
    Takagahara, T., Physical Review B, 1987, vol. 36 p. 9293.Google Scholar
  16. 16.
    Li, B., Guo, K.X., Zhang, C.J., and Zheng, Y.B., Physics Letters A, 2007, vol. 367, p. 493.ADSCrossRefGoogle Scholar
  17. 17.
    Shao, S., Guo, K.X., Zhang, Z.H., Li, N., and Peng, C., Superlattices and Microstructures, 2010, vol. 48, p. 541.ADSCrossRefGoogle Scholar
  18. 18.
    Liu, G., et al., Superlattices and Microstructures, 2013, vol. 53, p. 173.ADSCrossRefGoogle Scholar
  19. 19.
    Portacio, A.A., Rodríguez, B.A., and Villamil, P., Superlattices and Microstructures, 2018, vol. 113, p. 550.ADSCrossRefGoogle Scholar
  20. 20.
    Xie, W., Physics Letters A, 2008, vol. 372, p. 5498.ADSCrossRefGoogle Scholar
  21. 21.
    Bera, A., Ghosh, A., and Ghosh, M., Optical Materials, 2017, vol. 69, p. 352.ADSCrossRefGoogle Scholar
  22. 22.
    Malik, S., Roberts, C., Murray, R., and Pate, M., Applied Physics Letters, 1997, vol. 71, p. 1987.ADSCrossRefGoogle Scholar
  23. 23.
    Garcıa, J.M., Medeiros–Ribeiro, G., Schmidt, K., Ngo, T., Feng, J.L., Lorke, A., and Petroff, P.M., Applied Physics Letters, 1997, vol. 71, p. 2014.ADSCrossRefGoogle Scholar
  24. 24.
    Barker, J.A. and O'Reilly, E.P., Physica E: Low–dimensional Systems and Nanostructures, 1999, vol. 4, p. 231.ADSCrossRefGoogle Scholar
  25. 25.
    Lu, L., Xie, W., and Hassanabadi, H., Journal of Luminescence, 2011, vol. 131, p. 2538.ADSCrossRefGoogle Scholar
  26. 26.
    Hayrapetyan, D.B., et al., Nanotechnology VII. International Society for Optics and Photonics, 2015, vol. 9519, p. 951919.Google Scholar
  27. 27.
    Onyeaju, M.C., et al., Few–Body Systems, 2016, vol. 57, p. 793.ADSGoogle Scholar
  28. 28.
    Jasmine, P.C., Peter, A.J., and Lee, C.W., Chemical Physics, 2015, vol. 452, p. 40.ADSCrossRefGoogle Scholar
  29. 29.
    Hayrapetyan, D.B., Kazaryan, E.M., and Tevosyan, H.K., J. Contemp. Phys. (Armenian Ac. Sci.), 2014, vol. 49, p. 119.ADSCrossRefGoogle Scholar
  30. 30.
    Flügge, S., Practical quantum mechanics, Springer Science & Business Media, 2012.zbMATHGoogle Scholar
  31. 31.
    Hayrapetyan, D.B., Amirkhanyan, S.M., Kazaryan, E.M., and Sarkisyan, H.A., Physica E: Low–dimensional Systems and Nanostructures, 2016, vol. 84, p. 367.ADSCrossRefGoogle Scholar
  32. 32.
    Hayrapetyan, D.B., Kazaryan, E.M., Petrosyan, L.S., and Sarkisyan, H.A., Physica E: Low–dimensional Systems and Nanostructures, 2015, vol. 66, p. 7.ADSCrossRefGoogle Scholar
  33. 33.
    Rosencher, E. and Bois, Ph., Physical Review B, 1991, vol. 44, p. 11315.ADSCrossRefGoogle Scholar
  34. 34.
    Xie, W., Journal of Luminescence, 2013, vol. 143, p. 27.ADSCrossRefGoogle Scholar
  35. 35.
    Baskoutas, S., Paspalakis, E., and Terzis, A.F., Physical Review B, 2006, vol. 74, p. 153306.ADSCrossRefGoogle Scholar
  36. 36.
    Ahn, D. and Chuang, S.L., IEEE Journal of Quantum Electronics, 1987, vol. 23, p. 2196.ADSCrossRefGoogle Scholar
  37. 37.
    Landau, L.D. and Lifshitz, E.M., Quantum Mechanics: Non–Relativistic Theory, vol. 3, 3rd ed., Pergamon Press, 1977.zbMATHGoogle Scholar
  38. 38.
    Baskoutas, S., Paspalakis, E., and Terzis, A.F., Journal of Physics: Condensed Matter, 2007, vol. 19, p. 395024.Google Scholar
  39. 39.
    Kole, A.K., et al., Optics Communications, 2014, vol. 313, p. 231.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • D. A. Baghdasaryan
    • 1
    Email author
  • E. S. Hakobyan
    • 1
  • D. B. Hayrapetyan
    • 1
    • 2
  • H. A. Sarkisyan
    • 1
    • 2
    • 3
  • E. M. Kazaryan
    • 1
    • 2
  1. 1.Russian–Armenian UniversityYerevanArmenia
  2. 2.Peter the Great St.Petersburg Polytechnic UniversitySt.PetersburgRussia
  3. 3.Yerevan State UniversityYerevanArmenia

Personalised recommendations