Interband Absorption and Photoluminescence in Nanospherical InP/InAs/InP Core/Shell/Shell Heterostructure

  • V. A. Harutyunyan
  • M. A. Mkrtchyan
  • E. M. Kazaryan
  • D. B. HayrapetyanEmail author


The single-particle states of charge carriers in the nanospherical InP/InAs/InP heterostructure are theoretically considered in the isotropic effective mass approximation and in the regime of strong size quantization. The results of numerical computations of the energy levels of charge carriers at various thicknesses of the quantizing of the InAs layer of the indicated heterophase structure are presented. It is shown that it is possible to achieve the desired value and position of the size quantization levels of charge carriers in the layer by an appropriate choice of the layer thickness. The interband optical transitions in the InAs layer are also considered. The values of the effective broadening of the band gap of the InAs layer as a function of the layer thickness are computed. By numerical computations, it is shown that the absorption has a resonant character and that the diagonal transitions dominate in the spectrum of the interband absorption. For several diagonal transitions involving both light and heavy holes, the values of threshold frequencies and absorption curves are given. In the spherical InP/InAs/InP nanoheterostructure, the photoluminescence spectra were also constructed for various temperatures close to room temperature.


interband absorption photoluminescence nanosphere heterostructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aghekyan, N.G., Kazaryan, E.M., Kostanyan, A.A., and Sarkisyan, H.A., Superlattices and Microstructures, 2011, vol. 50, p. 199.ADSCrossRefGoogle Scholar
  2. 2.
    Ferron, A., Serra, P., and Osenda, O., Phys. Rev. B, 2012, vol. 85, p. 165322.ADSCrossRefGoogle Scholar
  3. 3.
    Harutyunyan, V.A., Hayrapetyan, D.B., and Baghdasaryan, D.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 350.ADSCrossRefGoogle Scholar
  4. 4.
    Harutyunyan, V.A., Hayrapetyan, D.B., and Kazaryan, E.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 48.ADSCrossRefGoogle Scholar
  5. 5.
    Harutryunyan, V., Effect of Static Electric Fields on the Electronic and Optical Properties of Layered Semiconductor Nanostructures, PART I Effect of Static Electric Fields on the Electronic Properties of Layered Semiconductor Nanostructures, Bentham Science, 2015.CrossRefGoogle Scholar
  6. 6.
    Henini, M., Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, Elsevier, 2011.Google Scholar
  7. 7.
    El–Toni, A.M., Habila, M.A., Labis, J.P., Othman, Z.A., Alhoshan, M., Elzatahry, A.A., and Zhang, F., Nanoscale, 2016, vol. 8, p. 2510.ADSCrossRefGoogle Scholar
  8. 8.
    Berezowsky, J., Gywat, O., Meier, F., Battaglia, D., Peng, X., and Awschalom, D.D., Nature Physics, 2006, vol. 2, p. 831.ADSCrossRefGoogle Scholar
  9. 9.
    Cat, D.T., Pucci, A., and Wandlet, K., Physics and Engineering of New Materials, Berlin–Heidelberg: Springer, 2009.CrossRefGoogle Scholar
  10. 10.
    Brovelli, S., Schaller, R.D., Crooker, S.A., Garcia–Santamaria, F., Chen, Y., Vishvanatha, R., Hollingsworth, J.A., Htoon, H., and Klimov, V.I., Nature Commun., 2011, vol. 2, Article Number 280.Google Scholar
  11. 11.
    Smith, A.M., Lane, L.A., and Nie, S., Nature Commun., 2014, vol. 5, Article number 4506.Google Scholar
  12. 12.
    K. Li, Nanotechnology, vol. 1, p. 482 (2014).Google Scholar
  13. 13.
    Kumar, C.S.S.R., (Ed.), Semiconductor nanomaterials. John Wiley & Sons; pp. 393–427 (2010).Google Scholar
  14. 14.
    Micro Systems and Devices for (Bio)chemical Processes, Jr: Chemical engineering, vol.38, San Diego: Academic Press, 2010.Google Scholar
  15. 15.
    Rai, M., and Duran, N., (Eds.), Metal Nanoparticles in Microbiology, Heidelberg–Dordrecht–London–New York: Springer Science & Business Media, 2011.CrossRefGoogle Scholar
  16. 16.
    Waiskopf, N., Rotem, R., Shweky, I., Yedidya, L., Soreq, H., and Banin, U., BioNanoScience, 2013, vol. 3, p. 1.CrossRefGoogle Scholar
  17. 17.
    Ogli, S. and Rostani, A., IET Nanobiotechnology, 2013, vol. 7, p. 140.CrossRefGoogle Scholar
  18. 18.
    Li, J., Wang, D., and LaPierre, R.R., Advances in III–V Semiconductor Nanowires and Nanodevices, Bentham Science (2011).Google Scholar
  19. 19.
    Mokkapati, S. and Jagadish, Ch., Materials today, 2009, vol. 12, p. 22.CrossRefGoogle Scholar
  20. 20.
    Fang, M., Han, N., Wang, F., Yang, Z–X., Yip, S.P., Dong, G., Hou, J.J., Chueh, Y., and Ho, J.C., Journal of Nanomaterials, 2014, vol. 2014, Article ID 702859.Google Scholar
  21. 21.
    PATENT WO 2007020416 A1, 22 Feb., 2007.Google Scholar
  22. 22.
    PATENT CA 2617972 C, 15 July, 2014.Google Scholar
  23. 23.
    Bachman, K.J., Annual Review of Materials Science, 1981, vol. 11, p. 441.ADSCrossRefGoogle Scholar
  24. 24.
    Gyuro, I., III–Vs Review, 1996, vol. 9, p. 30.Google Scholar
  25. 25.
    Ippen, Ch., Greco, T., and Wedel, A., Journ. Inf. Displ., 2012, vol. 13, p. 91.CrossRefGoogle Scholar
  26. 26.
    Froberg, L., Growth, Physics, and Device Applications of InAs–based Nanowires, Sweden: Lund university, 2008.Google Scholar
  27. 27.
    Contreras–Guerrero, R., Wang, S., Edirisooriya, M., Priyantha, W., Rojas–Ramirez, J.S., Bhuwalka, K., Doornbos, G., Holland, M., Oxland, R., Vellianitis, G., van Dal, M., Duriez, B., Passlack, M., Diaz, C.H., and Droopad, R., Journ. of Crystal Growth, 2013, vol. 378, p. 117.ADSCrossRefGoogle Scholar
  28. 28.
    Xu, K., Qi, Y., Gao, Z., Li, J., Wang, X., Zhang, Y., Han, Z., and Gao, E., Integrated Ferroelectrics, 2015, vol. 167, p. 205.CrossRefGoogle Scholar
  29. 29.
    Klimov, V.I., Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, CRC Press, 2003, 500p.CrossRefGoogle Scholar
  30. 30.
    Mohan, P., Motohisa, J., and Fukui, T., Appl. Phys. Lett., 2006, vol. 88, p. 013110.ADSCrossRefGoogle Scholar
  31. 31.
    Mohan, P., Motohisa, J., and Fukui, T., Appl. Phys. Lett., 2006, vol. 88, p. 133105.ADSCrossRefGoogle Scholar
  32. 32.
    Helmi, M., Alouane, N., Chauvin, N., and Chevallier, C., Nanotechnology, 2011, vol. 22, p. 405702.CrossRefGoogle Scholar
  33. 33.
    dos Santos, C.L. and Piquini, P., Journ. Appl. Phys., 2012, vol. 111, p. 054315.ADSCrossRefGoogle Scholar
  34. 34. Scholar
  35. 35. Scholar
  36. 36.
    Buhro, W.E. and Colvin, V.L., Nature Materials, 2003, vol. 2, p. 138.ADSCrossRefGoogle Scholar
  37. 37.
    Wang, Y., Yang, X., He, T.C., Gao, Y., Demir, H.V., Sun, X.W., and Sun, H.D., Appl. Phys. Lett., 2013, vol. 102, p. 021917.ADSCrossRefGoogle Scholar
  38. 38. Scholar
  39. 39. Scholar
  40. 40.
    Sun, M.H., Leong, E.S.P., Chin, A.H., Ning, C.Z., Cirlin, G.E., Samsonenko, Yu.B., Dubrovskii, V.G., Chuang, L., and Chang–Hasnain, C., Nanotechnology, 2010, vol. 21, p. 335705.CrossRefGoogle Scholar
  41. 41.
    Abramowitz M. and Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 4, National Bureau of Standards, 1964.zbMATHGoogle Scholar
  42. 42.
    Neverov, V.N. and Titov, A.N., Physics of Low–Temperature systems (Fizika Nazkorazmernykh system), Ekaterinburg: Ural. GU, 2008.Google Scholar
  43. 43.
    Vorobev L.E., Ivchenko, E.L., Firsov, D.A., and Shalygin, V.A., Optical properties of nanostructures. Saint Petersburg: Nauka, 2001.Google Scholar
  44. 44.
    Kazaryan, E.M., Kostanyan, A.A., and Sarkisyan, H.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2007, vol. 42, p. 145.ADSCrossRefGoogle Scholar
  45. 45.
    Basu, P.K., Theory of Optical Processes in Semiconductors, Oxford: Clarendon Press, 1997.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • V. A. Harutyunyan
    • 1
  • M. A. Mkrtchyan
    • 1
  • E. M. Kazaryan
    • 1
  • D. B. Hayrapetyan
    • 1
    Email author
  1. 1.Russian–Armenian UniversityYerevanArmenia

Personalised recommendations