Advertisement

A Lambert-W Exactly Solvable Level-Crossing Confluent Hypergeometric Two-State Model

  • Т. А. IshkhanyanEmail author
Article
  • 3 Downloads

Abstract

We introduce a new exactly integrable level-crossing model of quantum semiclassical two-state problem for which the analytic solution is written in terms of the Kummer confluent hypergeometric functions. This is a constant-amplitude field-configuration describing an asymmetricin- time level-crossing process for which the laser field frequency detuning is given in terms of the Lambert-W function. The general solution of the problem for this model is written as a linear combination, with arbitrary constant coefficients, of two fundamental solutions each of which presents an irreducible linear combination of two confluent hypergeometric functions. We present the fundamental solutions and analyze the behavior of the system in the external field defined by the specific field configuration.

Keywords

quantum two-state problem laser excitation analytic solution single-confluent Heun function confluent hypergeometric function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shore, B.W., The Theory of Coherent Atomic Excitation, New York: Wiley, 1990.Google Scholar
  2. 2.
    Landau, L.D., Phys. Z. Sowjetunion, 1932, vol. 2, p. 46.Google Scholar
  3. 3.
    Zener, C., Proc. R. Soc. London, Ser. A, 1932, vol. 137, p. 696.ADSCrossRefGoogle Scholar
  4. 4.
    Majorana, Е., Nuovo Cimento, 1932, vol. 9, p. 43.CrossRefGoogle Scholar
  5. 5.
    Stückelberg, E.C.G., Helv. Phys. Acta., 1932, vol. 5, p. 369.Google Scholar
  6. 6.
    Nikitin, E.E., Discuss. Faraday Soc., 1962, vol. 33, p. 14.CrossRefGoogle Scholar
  7. 7.
    Crothers, D.S.F. and Hughes, J.G., J. Phys. B, 1977, vol. 10, p. L557.Google Scholar
  8. 8.
    Rosen, N. And Zener, C., Phys. Rev., 1932, vol. 40, p. 502.ADSCrossRefGoogle Scholar
  9. 9.
    Demkov, Yu.N. and Kunike, M., Vestn. Leningr. Univ. Fis. Khim., 1969, vol. 16, p. 39.Google Scholar
  10. 10.
    Bambini, A. and Berman, P.R., Phys. Rev. A, 1981, vol. 23, p. 2496.ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hioe, F.T. and Carroll, C.E., Phys. Rev. A, 1985, vol. 32, p. 1541.ADSCrossRefGoogle Scholar
  12. 12.
    Hioe, F.T. and Carroll, C.E., J. Opt. Soc. Am. B, 1985, vol. 3(2), p. 497.Google Scholar
  13. 13.
    Carroll, C.E. and Hioe, F.T., J. Phys. A, 1986, vol. 19, p. 3579.ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ishkhanyan, A.M., J. Phys. A, 1997, vol. 30, p. 1203.ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Ishkhanyan, A.M., Optics Communications, 2000, vol. 176, p. 155.ADSCrossRefGoogle Scholar
  16. 16.
    Ishkhanyan, A.M., J. Phys. A, 2000, vol. 33, p. 5539.ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ronveaux, A., Heun’s Differential Equations, London: Oxford University Press, 1995.zbMATHGoogle Scholar
  18. 18.
    NIST Handbook of Mathematical Functions. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.). New York: Cambridge University Press, 2010.Google Scholar
  19. 19.
    Ishkhanyan, A.M., Shahverdyan, T.A., and Ishkhanyan, T.A., Eur. Phys. J. D, 2015, vol. 69, p. 10.ADSCrossRefGoogle Scholar
  20. 20.
    Ishkhanyan, A.M. and Grigoryan, A.E., J. Phys. A, 2014, vol. 47, p. 465205.ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Shahverdyan, T.A., Ishkhanyan, T.A., Grigoryan, A.E., and Ishkhanyan, A.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2015, vol. 50, p. 211.ADSCrossRefGoogle Scholar
  22. 22.
    Vidunas, R. and Filipuk, G., Funkcialaj Ekvacioj, 2013, vol. 56, p. 271.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Maier, R.S., J. Differential Equations, 2005, vol. 213, p. 171.ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Svartholm, N., Math. Ann., 1939, vol. 116, p. 413.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Erdélyi, A., Q. J. Math. (Oxford), 1944, vol. 15, p. 62.CrossRefGoogle Scholar
  26. 26.
    Schmidt, D., J. Reine Angew. Math., 1979, vol. 309, p. 127.MathSciNetGoogle Scholar
  27. 27.
    El–Jaick, L.J. and Figueiredo, B.D.B., J. Math. Phys., 2008, vol. 49, p. 083508.ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ishkhanyan, T.A. and Ishkhanyan, A.M., Ann. Phys., 2017, vol. 383, p. 79.ADSCrossRefGoogle Scholar
  29. 29.
    Ishkhanyan, T.A. and Ishkhanyan, A.M., AIP Advances, 2014, vol. 4, p. 087132.ADSCrossRefGoogle Scholar
  30. 30.
    Ishkhanyan, T.A. and Ishkhanyan, A.M., Appl. Math. Comput., 2018, vol. 338, p. 624.MathSciNetGoogle Scholar
  31. 31.
    Saget, G., Ishkhanyan, A.M., Leroy, C., and Ishkhanyan, T.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2017, vol. 52, p. 324.ADSCrossRefGoogle Scholar
  32. 32.
    Manukyan, A.M., Ishkhanyan, T.A., Hakobyan, M.V., and Ishkhanyan, A.M., IJDEA, 2014, vol. 13, p. 231.Google Scholar
  33. 33.
    Lambert, J.H., Acta Helvitica, 1758, vol. 3, p. 128.Google Scholar
  34. 34.
    Euler, L., Acta Acad. Scient. Petropol., 1783, vol. 2, p. 29.Google Scholar
  35. 35.
    Slater, L.J., Generalized hypergeometric functions, Cambridge: Cambridge University Press, 1966.zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute for Physical ResearchNAS of ArmeniaAshtarakArmenia
  2. 2.Laboratoire Interdisciplinaire Carnot de BourgogneUniversité de Bourgogne Franche-ComtéDijonFrance

Personalised recommendations