Advertisement

Vacuum Polarization Induced by a Boundary in de Sitter Space with Compact Dimensions

  • A. A. SaharianEmail author
  • D. H. Simonyan
  • A. S. Kotanjyan
Article
  • 4 Downloads

Abstract

The vacuum expectation value of the squared complex scalar field induced by a boundary in the de Sitter space with an arbitrary number of toroidally compactified dimensions is investigated. On the boundary, the field obeys the Robin condition and the quasiperiodicity conditions with arbitrary phases are imposed along the compact dimensions. In the expression for the vacuum expectation value, the part caused by the presence of the boundary is explicitly separated and its behavior is investigated in various asymptotic regions of the parameters of the problem.

Keywords

de Sitter space Casimir effect compact dimensions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Linde, A.D., Particle Physics and Inflationary Cosmology, Switzerland: Harwood Academic Publishers, 1990.CrossRefGoogle Scholar
  2. 2.
    Campanelli, L., Phys. Rev. Lett., 2013, vol. 111, p. 061301.ADSCrossRefGoogle Scholar
  3. 3.
    Campanelli, L., Phys. Rev. Lett., 2013, vol. 111, p. 229002.ADSCrossRefGoogle Scholar
  4. 4.
    Riess, A.G., et al., Astrophys. J., 2007, vol. 659, p. 98.ADSCrossRefGoogle Scholar
  5. 5.
    Spergel, D.N., et al., Astrophys. J. Suppl. Ser., 2007, vol. 170, p. 377.ADSCrossRefGoogle Scholar
  6. 6.
    Komatsu, E., et al., Astrophys. J. Suppl. Ser., 2009, vol. 180, p. 330.ADSCrossRefGoogle Scholar
  7. 7.
    Mostepanenko, V.M. and Trunov. N.N., The Casimir Effects and Its Applications, Oxford: Oxford University Press, 1997.Google Scholar
  8. 8.
    Milton, K.A., The Casimir Effect: Physical Manifestation of Zero–Point Energy, Singapore: World Scientific, 2002.Google Scholar
  9. 9.
    Bordag, M., Klimchitskaya, G.L., Mohideen, U., and Mostepanenko, V.M., Advances in the Casimir Effect, Oxford: Oxford University Press, 2009.CrossRefzbMATHGoogle Scholar
  10. 10.
    Saharian, A.A. and Setare, M.R., Phys. Lett. B, 2008, vol. 659, p. 367.ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bellucci, S. and Saharian, A.A., Phys. Rev. D, 2008, vol. 77, p. 124010.ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Saharian, A.A., Classical Quantum Gravity, 2008, vol. 25, p. 165012.ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bezerra de Mello, E.R. and Saharian, A.A., J. High Energy Phys., 2009, vol. 04, p. 046.ADSCrossRefGoogle Scholar
  14. 14.
    Bellucci, S., Saharian, A.A., and Nersisyan, H.A., Phys. Rev. D, 2013, vol. 88, p. 024028.ADSCrossRefGoogle Scholar
  15. 15.
    Navasardyan, T.Sh. and Saharian, A.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2014, vol. 49, p. 1.ADSCrossRefGoogle Scholar
  16. 16.
    Navasardyan, T.Sh. and Saharian, A.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2014, vol. 49, p. 243.ADSCrossRefGoogle Scholar
  17. 17.
    Navasardyan, T.Sh. and Saharian, A.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2017, vol. 52, p. 473.CrossRefGoogle Scholar
  18. 18.
    Chubaryan, E.V., Kotanjyan, A.S., Saharian, A.A., and Simonyan, D.H., Grav. Cosm., 2016, vol. 22, p. 187.ADSCrossRefGoogle Scholar
  19. 19.
    Abramowitz, M. And Stegun, I.A., Handbook of Mathematical Functions, National Bureau of Standards, Washington D.C., 1970.zbMATHGoogle Scholar
  20. 20.
    Simonyan, D.H., Armenian Journal of Physics, 2018, vol. 11(3), p. 145.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. A. Saharian
    • 1
    Email author
  • D. H. Simonyan
    • 1
  • A. S. Kotanjyan
    • 1
  1. 1.Yerevan State UniversityYerevanArmenia

Personalised recommendations