Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 9, pp 297–300 | Cite as

Three-Dimensional Paul Trap with High Secular Frequency for Compact Optical Clock

  • I. A. SemerikovEmail author
  • I. V. Zalivako
  • A. S. Borisenko
  • M. D. Aksenov
  • P. A. Vishnyakov
  • P. L. Sidorov
  • N. N. Kolachevskii
  • K. Yu. Khabarova
Article
  • 8 Downloads

Abstract

The Paul ion trap is developed for the use in a compact frequency standard based on a single ytterbium ion. The design features are the use of atomic ovens for compensating for parasitic electric fields and good optical accessibility. The results on trapping and laser cooling of a single 171Yb+ ion are presented. A secular frequency of up to 1.2 MHz has been achieved.

Keywords

optical clock ytterbium ion transportable frequency standard 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the Ministry of Education and Science of the Russian Federation (agreement no. 14.610.21.0010, project unique identifier RFMEFI61017X0010).

References

  1. 1.
    N. Huntemann, C. Sanner, B. Lipphardt, et al., Phys. Rev. Lett. 116, 1 (2016).CrossRefGoogle Scholar
  2. 2.
    T. Bothwell, D. Kedar, E. Oelker, et al., arXiv:1906.06004 (2019).Google Scholar
  3. 3.
    T. P. Heavner, E. A. Donley, F. Levi, et al., Metrologia 51, 174 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    R. M. Godun, P. B. R. Nisbet-Jones, J.M. Jones, et al., Phys. Rev. Lett. 113, 1 (2014).CrossRefGoogle Scholar
  5. 5.
    P. Wcislo, P. Morzýnski, M. Bober, et al., Nat. Astron. 1, 0009 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Cao, P. Zhang, J. Shang, et al., Appl. Phys. B 123, 112 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    S. B. Koller, J. Grotti, S. Vogt, et al., Phys. Rev. Lett. 118, 1 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Grotti, S. Koller, S. Vogt, et al., Nat. Phys. 14, 437 (2018).CrossRefGoogle Scholar
  9. 9.
    F. Riehle, Nat. Photonics 11, 25 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    C. A. Schrama, E. Peik, W.W. Smith, and H. Walther, Opt. Commun. 101, 32 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    Q. A. Turchette, Kielpinski, B. E. King, et al., Phys. Rev. A 61, 063418 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    D. J. Berkeland, J. D. Miller, J. C. Bergquist, et al., J. Appl. Phys. 83, 5025 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    L. Deslauriers, S. Olmschenk, D. Stick, et al., Phys. Rev. Lett. 97, 103007 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    I. A. Boldin, A. Kraft, and C. Wunderlich, Phys. Rev. Lett. 120, 23201 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    J. D. Siverns, L. R. Simkins, S. Weidt, and W. K. Hensinger, Appl. Phys. B: Lasers Opt. 107, 921 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • I. A. Semerikov
    • 1
    Email author
  • I. V. Zalivako
    • 1
  • A. S. Borisenko
    • 1
  • M. D. Aksenov
    • 1
  • P. A. Vishnyakov
    • 1
  • P. L. Sidorov
    • 2
  • N. N. Kolachevskii
    • 1
    • 2
  • K. Yu. Khabarova
    • 1
    • 2
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Skolkovo Innovation CenterRussian Quantum CenterMoscowRussia

Personalised recommendations