Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 9, pp 284–288 | Cite as

Role of Aqueous Aerosols in Ozone Decomposition in the Near-Surface Atmosphere

  • S. N. Kotelnikov
  • E. V. StepanovEmail author
Article
  • 2 Downloads

Abstract

The effect of aqueous aerosol on the ozone concentration in atmospheric air is experimentally demonstrated. In field experiments, an abrupt decrease in the ozone concentration in the near-surface atmosphere was observed during a short-term shower rain in a megacity. Ozone decomposition in the presence of water was also studied under laboratory conditions in the reactive chamber. It is shown that ozone decomposition in air is enhanced at high relative humidity, and in the presence of aqueous aerosol. The ozone decomposition rate depends on the aerosol size; the smaller the particle, the higher the decomposition rate; this can indicate a significant role of heterogeneous bonding on the aerosol surface in the ozone decomposition.

Keywords

ozone near-surface atmosphere ozone decomposition in the atmosphere relative humidity aqueous aerosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Vingarzan, Atmos. Environ. 38(21), 3431 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    Ground-level ozone in the 21st century: future trends, impacts and policy implications (The Royal Society, 2008); https://royalsociety.org/topics-policy/publications.
  3. 3.
    B. D. Belan, Ozone in Troposphere (Inst. Atmospheric Optics, Tomsk, 2010) [in Russian].Google Scholar
  4. 4.
    O. R. Cooper, D. D. Parrish, J. Ziemke, et al., Elementa. Science of the Antropocene 2, 000029 (2014); DOI: 10.12952/journal. elementa.Google Scholar
  5. 5.
    P. S. Monks, A. T. Archibald, A. Colette, et al., Atmos. Chem. Phys. 15, 8889 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    N. Otero, J. Sillmann, J. L. Schnell, et al., Environ. Res. Lett. 11, 024005 (2016); DOI: 10.1088/1748-9326/11/2/024005.ADSCrossRefGoogle Scholar
  7. 7.
    D. J. Jacob, Atmos. Environ. 34(12-14), 2131 (2000); DOI: 10.1016/S1352-2310(99)00462-8.ADSCrossRefGoogle Scholar
  8. 8.
    L. W. Horowitz, J. Geophys. Res. 111(D22), 211 (2006); DOI: 10.1029/2005JD006937.CrossRefGoogle Scholar
  9. 9.
    V. P. Chelibanov, S. N. Kotelnikov, N. V. Smirnov, and E. A. Jasenko, Biosphere 7, 119 (2015).Google Scholar
  10. 10.
    E. V. Stepanov and S. G. Kasoev, Opt. Spektrosk. 126, 812 (2019) [Opt. Spectrosc. 126, 736 (2019)].CrossRefGoogle Scholar
  11. 11.
    L. S. Ivlev, Chapter 10. “Atmospheric Aerosols” in Aerosols - Science and Technology, Ed. By I. Agranovski (Wiley-CH, Wienheim, 2010).Google Scholar
  12. 12.
    R. Jaenicke, “Tropospheric Aerosols” in Aerosol-Cloud-Climate Interactions (Academic Press, New York, London, 1993), pp. 1–31.CrossRefGoogle Scholar
  13. 13.
    K. Olszyna, R. D. Cadle, and P. G. de Pena, J. Geoph. Res. 84, 1771 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations