Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 9, pp 273–275 | Cite as

Vanadium Oxide Nanostructures Synthesized by Laser Ablation in Water

  • G. E. Val’yano
  • T. I. Borodina
  • V. T. Karpukhin
  • M. M. MalikovEmail author
  • M. A. Kazaryan
Article
  • 1 Downloads

Abstract

The composition and structure morphology of a dry colloid precipitate obtained by pure vanadium ablation in distilled water is analyzed by X-ray diffraction and electron microscopy. It is shown that the precipitate material is based on various vanadium oxides in the amorphous form. The precipitate represents a conglomerate of micrometer-sized particles composed of various layered structures of nanoscale thickness with a highly developed surface. These features of vanadium oxide nanostructures imply their promising application as efficient substrata in the analytical method based on surface-enhanced Raman scattering.

Keywords

transition metals laser ablation in water vanadium oxides nanostructure morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. R. Nobiev, R. G. Efremov, and G. D. Chumanov, Usp. Fiz. Nauk 154, 459 (1988) [Sov. Phys. Usp. 31, 241 (1988)].CrossRefGoogle Scholar
  2. 2.
    A. Yu. Varaksin, High Temp. 54, 409 (2016).CrossRefGoogle Scholar
  3. 3.
    A. Yu. Varaksin, High Temp. 55, 286 (2017).CrossRefGoogle Scholar
  4. 4.
    D. W. Li, W. L. Zhai, Y. T. Li, and Y. T. Long, Microchim. Acta 181, 23 (2014). DOI 10.1007/s00604-013- 1115-3.CrossRefGoogle Scholar
  5. 5.
    V. S. Zuev, Preprint No. 3, FIAN (Moscow, Lebedev Physical Institute, Russian Academy of Sciences, 2006).Google Scholar
  6. 6.
    V. I. Emel’yanov and N. I. Koroteev, Usp. Fiz. Nauk 135, 345 (1981) [Sov. Phys. Usp. 24 864 (1981)].CrossRefGoogle Scholar
  7. 7.
    Y. S. Yamamoto and T. Itoh, J. Raman Spectrosc. 47, 78 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    J. R. Lombardi and R. L. Birke, J. Phys. Chem. C 118, 11120 (2014).CrossRefGoogle Scholar
  9. 9.
    W. Ji, B. Zhao, and Y. Ozaki, J. Raman Spectrosc. 47, 51 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    Y. L. Deng, and Y. J. Juang, Biosens. Bioelectron. 53, 37 (2014).CrossRefGoogle Scholar
  11. 11.
    I. Rigo, M. Veres, L. Himics, et al., “Comparative Analysis of SERS Substrates of Different Morphology,” Proc. Engineering, 2016, 30th Eurosensors Conference, EUROSENSORS 2016.Google Scholar
  12. 12.
    W. Q. Li, G. Wang, X. N. Zhang, et al., Nanoscale 7, 15487 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    Z. L. Wang, Adv. Mater. 15, 432 (2003).CrossRefGoogle Scholar
  14. 14.
    Y. Xia, P. Yang, et al., Adv. Mater. 15, 3539 (2003).Google Scholar
  15. 15.
    E. Yimam, “Fabrication of Vanadium Oxide Nanoparticles by Pulsed Laser Ablation,” Master’s Thesis, 2015. http://URN.fi/URN:NBN:fi:tty-201501291031Google Scholar
  16. 16.
    J. Nag, and R. F. Haglund., Jr., J. Phys.: Condens. Matter 20, 264016 (2008).ADSGoogle Scholar
  17. 17.
    A. Xin-Xin, J. Xi-Ping, and J. Huan, Chin. J. Inorg. Chem. 26, 1159 (2010).Google Scholar
  18. 18.
    A. I. Sidorov, O. P. Vinogradova, I. E. Obyknovennaya, and T. A. Khrushehova, Tech. Phys. Lett. 33, 581 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Wang and G. Cao, Chem. Mater. 18, 2787 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    V. M. Batenin, P. A. Bohan, V. V. Buchanov, et al., “Metal-Atom Self-Terminating Lasers,” Vol. 2., Ed. by V. M. Batenin (Fizmatlit, Moscow, 2011), 610 p. [in Russian].Google Scholar
  21. 21.
    G. W. Yang, Progr. Mater. Sci. 52, 648 (2007).CrossRefGoogle Scholar
  22. 22.
    J. Livage, Materials 3, 4175 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    M. Farahmandjou and N. Abaeiyan, J. Nanomed. Res. 5, 00103 (2017).CrossRefGoogle Scholar
  24. 24.
    Yu. G. Pomerantsev, Usp. Fiz. Nauk 120, 581 (1976) [Sov. Phys. Usp.].CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • G. E. Val’yano
    • 1
  • T. I. Borodina
    • 1
  • V. T. Karpukhin
    • 1
  • M. M. Malikov
    • 1
    Email author
  • M. A. Kazaryan
    • 2
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations