Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 8, pp 256–258 | Cite as

Broadband Modulator Converting Infrared Radiation to Visible Light Based on Resonant Excitation of Surface Waves

  • S. I. ValyanskiiEmail author
  • M. A. Kononov
  • I. S. Nedosekina
Article
  • 1 Downloads

Abstract

The fundamental possibility of developing one of the modulator circuits, i.e., the infrared-to-visible radiation converter, is considered, and its sensitivity is roughly estimated. The problem of visualization of infrared radiation is a relevant subject of study. The scheme of the light-controlled modulator we propose does not replicate any known scheme. Its operation is based on the effect of excitation of a surface plasmon wave.

Keywords

liquid crystals surface plasmon resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Jussila, He Yang, N. Granqvist, and Z. Sun, Optica 3, 151 (2016); doi:  https://doi.org/10.1364/OPTICA.3.000151.CrossRefGoogle Scholar
  2. 2.
    S. A. Maier, Plasmonics Fundamentals and Applications (Springer Science & Business Media, Dordrecht, 2007), p. 229.CrossRefGoogle Scholar
  3. 3.
    S. I. Valyanskii, S. V. Vinogradov, and V. V. Savranskii, Tech. Phys. Lett. 18, 70 (1992).Google Scholar
  4. 4.
    S. V. Vinogradov and M. A. Kononov, Adv. Appl. Phys. 4, 343 (2016).Google Scholar
  5. 5.
    S. V. Vinogradov, M. A. Kononov, V. M. Kononov, and V. V. Savranskii, Kratkie Soobshcheniya po Fizike FIAN 42(1), 21 (2015) [Bulletin of the Lebedev Physics Institute 42, 30 (2015)].Google Scholar
  6. 6.
    C. G. Granqvist and A. Hultaker, Thin Solid Films 1, 411 (2002); doi:  https://doi.org/10.1016/S0040-6090(02)00163-3.Google Scholar
  7. 7.
    S. V. Vinogradov, M. A. Kononov, V. M. Kononov, et al., Appl. Phys. 4, 5 (2017).Google Scholar
  8. 8.
    E. V. Aksenova, A. A. Karetnikov, N. A. Karetnikov, et al., J. Exp. Theor. Phys. 122, 942 (2016); doi:  https://doi.org/10.1134/S1063776116050010.ADSCrossRefGoogle Scholar
  9. 9.
    J. L. B. De La Tocnaye, Liq. Cryst. 2, 241 (2004); doi: org/ https://doi.org/10.1080/02678290410001648570.CrossRefGoogle Scholar
  10. 10.
    J. Li, S. Gauza, and S. T. Wu, J. Appl. Phys. 96, 19 (2004); doi:  https://doi.org/10.1364/OPEX.12.002002.ADSCrossRefGoogle Scholar
  11. 11.
    T. Devi, B. Choudhury, A. Bhattacharjee, and R. Dabrowski, Opto-Electron. Rev. 22, 24 (2014); doi:  https://doi.org/10.2478/s11772-014-0171-5.ADSCrossRefGoogle Scholar
  12. 12.
    H. Chen, T. Lu, and W. Cao, Phys. B 373, 177 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • S. I. Valyanskii
    • 1
    Email author
  • M. A. Kononov
    • 2
  • I. S. Nedosekina
    • 1
  1. 1.National University of Science and Technology “MISIS”MoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations