Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 8, pp 243–247 | Cite as

Low-Frequency Stimulated Scattering in an Aqueous Suspension of Dielectric Nanospheres

  • A. F. Bunkin
  • M. A. DavydovEmail author
  • S. M. Pershin
  • N. V. Suyazov
  • A. N. Fedorov
Article
  • 7 Downloads

Abstract

A low-frequency stimulated scattering (LFSS) signal caused by pulsations of nanospheres under an electromagnetic field is detected in an aqueous suspension of dielectric nanospheres of three diameters (∼74 nm, ∼292 nm, and ∼540 nm) at various particle concentrations. The frequency shifts of the scattering line, calculated based on the developed model, are in good agreement with the measurement results.

Keywords

stimulated scattering acoustic mode frequency shift nanoparticle suspension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported in part by the Russian Foundation for Basic Research, projects nos. 18-52-16016 and 19-02-00013.

References

  1. 1.
    J. Shi, H. Wu, J. Liu, et al., Sci. Rep. 5, 11964 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    M. P. Zhilenko, K. I. Zemskov, G. V. Lisichkin, et al., “New Type of Stimulated Scattering: Low-Frequency Raman Scattering,” in Raman Scattering: 85 Years of Studies investigation (MF SORAN, Krasnoyarsk, 2013), pp. 126–130 [in Russian].Google Scholar
  3. 3.
    I. S. Burkhanov, L. L. Chaikov, D. Y. Korobov, et al., J. Russ. Laser Res. 33, 496 (2012).CrossRefGoogle Scholar
  4. 4.
    A. F. Bunkin, M. A. Davydov, V. N. Lednev, et al., Kratkie Soobshcheniya po Fizike FIAN 45(6), 37 (2018) [Bulletin of the Lebedev Physics Institute 45, 187 (2018)].Google Scholar
  5. 5.
    N. S. Lishanskii, A. Yu. Men’shikova, T. G. Evseeva, et al., Polym. Sci., Ser. B 33, 413 (1991).Google Scholar
  6. 6.
    V. S. Starunov and I. L. Fabelinskii, Usp. Fiz. Nauk 98, 441 (1969) [Sov. Phys.-Usp. 12, 463 (1970)].CrossRefGoogle Scholar
  7. 7.
    E. Duval, Phys. Rev. B 46, 5795 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    H. Lamb, Proc. London Math. Soc. 13, 187 (1882).Google Scholar
  9. 9.
    A. Tamura, K. Higeta, T. Ichinokawa, J. Phys. C: Solid State Phys. 15, 4975 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1973).zbMATHGoogle Scholar
  11. 11.
    V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, and V. R. Startsev, Kvant. Elektron. 10, 1386 (1983) [Sov. J. Quantum Electron. 13, 900 (1983)].ADSGoogle Scholar
  12. 12.
    Z. Bai, H. Yuan, Z. Liu, et al., Opt.Mater. 75, 626 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. F. Bunkin
    • 1
  • M. A. Davydov
    • 1
    Email author
  • S. M. Pershin
    • 1
  • N. V. Suyazov
    • 1
  • A. N. Fedorov
    • 1
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations