Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 6, pp 210–214 | Cite as

Nonlinear Refraction in Colloidal Ag2S Quantum Dots

  • T. S. KondratenkoEmail author
  • M. S. Smirnov
  • O. V. Ovchinnikov
  • A. I. Zvyagin
  • T. A. Chevychelova
  • I. V. Taydakov
Article
  • 6 Downloads

Abstract

Features of nonlinear refraction formation in colloidal solutions containing Ag2S quantum dots passivated with thioglycolic acid (Ag2S/TGA QDs) with a concentration of 0.1% and an average size of 2.0 nm are considered. Nonthermal self-focusing caused by the “band filling” effect under exciton excitation was detected by the Z-scanning method for 10-ns pulses of a YAG:Nd laser at a wavelength of 532 nm for Ag2S/TGA QDs having an exciton absorption maximum at 590 nm.

Keywords

nonlinear refraction Ag2S quantum dots “band filling” Z-scanning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the Russian Science Foundation, project no. 17-72-10225.

References

  1. 1.
    J. V. Antony, J. J. Pillai, Ph. Kurian, et al., New J. Chem. 41, 3524 (2017).CrossRefGoogle Scholar
  2. 2.
    R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, et al., J. Opt. A: Pure Appl. Opt. 5, 409 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, et al., Semiconductors 49, 373 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    N. Venkatram, R. S. S. Kumar, D. N. Rao, J. Appl. Phys. 100, 074309 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    Q. Chang, Y. Gao, X. Liu, et al., IOP Conf. Ser.: Earth Environ. Sci. 186, 012076 (2018).CrossRefGoogle Scholar
  6. 6.
    A. I. Zvyagin, M. S. Smirnov, O. V. Ovchinnikov, et al., Kratkie Soobshcheniya po Fizike FIAN 46(3), 23 (2019) [Bull. Lebedev Phys. Inst. 46, 93 (2019)].Google Scholar
  7. 7.
    H. Aleali, N. Mansour, and M. Mirzaie, Int. J. Math. Comput. Phys. Electr. Computer Eng. 8(9), 1274 (2014).Google Scholar
  8. 8.
    O. V. Ovchinnikov, M. S. Smirnov, A. S. Perepelitsa, et al., Quantum Electron. 45, 1143 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    Y.-P. Sun, J. E. Riggs, H. W. Rollins, et al., J. Phys. Chem. B 103, 77 (1999).CrossRefGoogle Scholar
  10. 10.
    M. Y. Han, W. Huang, C. H. Chew, et al., J. Phys. Chem. B 102, 1884 (1998).CrossRefGoogle Scholar
  11. 11.
    H. Aleali and N. Mansour, Optik 127, 2485 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    R. Karimzadeh, H. Aleali, and N. Mansour, Opt. Commun. 284, 370 (2011).CrossRefGoogle Scholar
  13. 13.
    M. Dehghanipour, M. Khanzadeh, M. Karimipour, et al., Opt. Laser Technol. 100, 286 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    H. Aleali, L. Sarkhosh, R. Karimzadeh, et al., Phys. Status Solidi B 248, 680 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Fu, R. A. Ganeev, C. Zhao, et al., Appl. Phys. B 125, 1 (2019).ADSCrossRefGoogle Scholar
  16. 16.
    T. S. Kondratenko, A. I. Zvyagin, M. S. Smirnov, et al., J. Lumin. 208, 193 (2019).CrossRefGoogle Scholar
  17. 17.
    A. S. Perepelitsa, M. S. Smirnov, O. V. Ovchinnikov, et al., J. Lumin. 198, 357 (2018).CrossRefGoogle Scholar
  18. 18.
    T. S. Kondratenko, I. G. Grevtseva, A. I. Zvyagin, et al., Opt. Spektrosk. 124, 640 (2018) [Opt. Spectrosc. 124, 673 (2018)].CrossRefGoogle Scholar
  19. 19.
    X. Liu, S. Guo, H. Wang, et al., Opt. Commun. 197, 431 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    A. G. Litvak, Pisma Zh. Eksp. Teor. Fiz. 4, 341 (1966) [JETP Lett.].Google Scholar
  21. 21.
    D. A. B. Miller, C. T. Seaton, M. E. Prise, et al., Phys. Rev. Lett. 47, 197 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • T. S. Kondratenko
    • 1
    Email author
  • M. S. Smirnov
    • 1
  • O. V. Ovchinnikov
    • 1
  • A. I. Zvyagin
    • 1
  • T. A. Chevychelova
    • 1
  • I. V. Taydakov
    • 2
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations