Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 6, pp 206–209 | Cite as

From the Coulomb to Effective Interaction: Application to Bose—Einstein Condensation

  • S. A. TriggerEmail author


An expression for the short-range effective interaction potential of “quasinuclei” is derived based on the “pure” Coulomb interaction model. This model represents the equilibrium Coulomb system (CS) of interacting electrons and identical nuclei using the adiabatic approximation for nuclei and an arbitrarily strong (in general) interaction for the electronic subsystem (degenerate or nondegenerate). Based on general properties of the Coulomb interaction, it is shown that the Fourier component of the effective pair potential between “quasinuclei” is discontinuous at the wave vector q = 0 in the case of the weak interaction between electronic and nuclear subsystems. This discontinuity is important for Bose-condensed systems such as Hell and rarefied alkali-metal gases at temperatures lower than that of the Bose condensation transition when a macroscopic number of quasiparticles with momentum q = 0 exist. It is shown that there can be a spectral gap for single-particle excitations, which disappears in the normal state.


Coulomb interaction effective potential Bose-Einstein condensation gap in the excitation spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is grateful to E.M. Apfelbaum, V. B. Bobrov, A.M. Ignatov, G.A. Martynov, and P.P.J.M. Schram for helpful discussions.

This study was supported by the Russian Foundation for Basic Research, project no. 17-02-00573.


  1. 1.
    W.-D. Kraeft, D. Kjemp, W. Ebeling, and G. Ropke, Quantum Statistics of Charged Particle Systems (Plenum, New York, 1986).CrossRefGoogle Scholar
  2. 2.
    A. A. Vedenov and A. I. Larkin, Zh. Eksp. Teor. Fiz. 36, 1133 (1959) [Sov. Phys. JETP 9, 806 (1959)].Google Scholar
  3. 3.
    W. Ebeling, Ann. Physik 22, 33, 383 (1968); W. Ebeling, Ann. Phys. Feipz. 19, 104 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    W. Ebeling, V. Fortov, and V. Filinov, Quantum Statistics of Dense Gases and Nonideal Plasmas, Springer Series in Plasma Science and Technology(Springer, Cham, 2017).zbMATHGoogle Scholar
  5. 5.
    N. I. Klyuchnikov and S. A. Trigger, Zh. Eksp. Teor. Fiz. 52, 276 (1967) [Sov. Phys. JETP 25, 178 (1967)].Google Scholar
  6. 6.
    V. E. Fortov, I. T. Iakubov, and A. G. Khrapak, Physics of Strongly Coupled Plasma (Oxford University Press, Oxford, 2006).CrossRefzbMATHGoogle Scholar
  7. 7.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).zbMATHGoogle Scholar
  8. 8.
    V. B. Bobrov, I. M. Sokolov, and S. A. Trigger, Phys. Plasmas 19, 062101 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    V. B. Bobrov, S. A. Trigger, and A. G. Zagorodny, Kjatkie Soobshcheniya po Fizike FIAN 42(11), 28 (2015) [Bull. Febedev Phys. Inst. 42, 329 (2015)].Google Scholar
  10. 10.
    E. H. Fieb and J. P. Solovej, Commun. Math. Phys. 252, 485 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    E. M. Fradkin, Trudy FIAN 29, 7 (1965) [Proc. Febedev Phys. Inst.].Google Scholar
  12. 12.
    S. A. Trigger and P.P.J.M. Schram, Physica B 228, 107 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    P. Navez and K. Bongs, Europhys. Fett. 88, 60008 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations