Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 6, pp 191–196 | Cite as

Significant Decrease in the Breakdown Threshold Voltage of the Commercial Laser Flash Lamp under kHz Pumping

  • A. M. Val’shin
  • C. M. PershinEmail author
  • G. M. Mikheev
Article

Abstract

For the first time, to our knowledge, a multiple (to a factor of 3) reduction of the breakdown threshold of commercial cylindrical laser flash lamps with capacitive (through lamp electrodes) high-frequency (HF) pumping (19-3000 kHz) in comparison with a DC breakdown threshold is observed. When operating at a frequency of 400 kHz, a proportional decrease in the HF breakdown threshold is detected for a twofold increase in the relative dielectric permittivity ε when air as a cooling agent (ε = 1) is replaced by capacitor oil (ε = 2). An increase in ε to 21 in acetone is accompanied by a 30% decrease in the breakdown threshold and its subsequent stabilization with an increase in ε to 81 (in water). It is found that the breakdown threshold dispersion has two stages: an abrupt drop with a high (0.1–0.2 kV/kHz) slope in the range of 0–19 kHz and a smooth (~30%) decrease with increasing frequency to 3000 kHz.

Keywords

high-frequency pumping multiple decrease in the HF breakdown threshold of the flashlamp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported in part by the Russian Foundation for Basic Research RFBR-Bel, project no. 18-52-00038.

References

  1. 1.
    V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, et al., J. Anal. At. Spectrom. 33, 294 (2018). https://doi.org/10.1039/C7JA00319F CrossRefGoogle Scholar
  2. 2.
    rs http://www.lasers.llnl.gov url }Google Scholar
  3. 3.
    V. B. Rozanov, S. Yu. Gus’kov, G. A. Vergunova, et al., J. Phys.: Conf. Ser. 688(1), 012095 (2016); doi:10.1088/1742-6596/688/1/012095; http://www.fpl.gpi.ru/Zvenigorod/XXXIX/Re.html Google Scholar
  4. 4.
    V. V. Apollonov, High power/energy laser in our life (Nova, New York, 2016).Google Scholar
  5. 5.
    E. A. Kral’kina, Usp. Fiz. Nauk 178, 519 (2008) [Phys.-Usp. 51, 493 (2008)].CrossRefGoogle Scholar
  6. 6.
    A.M. Valshin, S.M. Pershin, R. F. Tavlykaev, and G.M. Mikheev, Phys.Wave Phenom. 23, 199 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    A. M. Valshin, S. M. Pershin, and G. M. Mikheev, Kratkie Soobshcheniya po Fizike FIAN 44(8), 18 (2017) [Bull. Lebedev Phys. Inst. 44, 228 (2017)]; DOI 10.3103/S1068335617080036Google Scholar
  8. 8.
    N. A. Kaptsov, Electronics (Gos. Izdat. Tekh.-Teor. Lit., Moscow, 1956) [in Russian].Google Scholar
  9. 9.
    G.A. Mesyats and Yu. D. Korolev, Physics of Pulsed Gas Breakdown (Nauka,Moscow, 1991) [in Russian].Google Scholar
  10. 10.
    Pulsed Light Sources, Ed. by I.S. Marshak (Energiya,Moscow, 1978) [in Russian].Google Scholar
  11. 11.
    Yu. P. Raizer, Gas Discharge Physics (Intellekt,Moscow, 2009) [in Russian].Google Scholar
  12. 12.
    B.M. Smirnov, Usp. Fiz. Nauk 179, 591 (2009) [Phys.-Usp. 52, 559 (2009)].CrossRefGoogle Scholar
  13. 13.
    A. A. Kudryavtsev, S. U. Nisimov, E. I. Prokhorova, and A. G. Slyshov, Zh. Tekh. Fiz. 82, 8 (2012) [Tech. Phys. 57, 1188 (2012)].Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. M. Val’shin
    • 1
    • 2
  • C. M. Pershin
    • 3
    Email author
  • G. M. Mikheev
    • 2
  1. 1.Bashkir State UniversityUfaRussia
  2. 2.Institute of Mechanics, Udmurt Federal Research Center, Ural BranchRussian Academy of SciencesIzhevskRussia
  3. 3.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations