Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 1, pp 5–8 | Cite as

Growth of Si/Si1_xGex/Si (x < 0.1) Quantum Wells by Modulating Ge Molecular Flow. I. Molecular Beam Epitaxy

  • I. P. Kazakov
  • A. V. KlekovkinEmail author
  • V. A. Tsvetkov
  • M. A. Akmaev
  • O. V. Uvarov
Article
  • 4 Downloads

Abstract

Single quantum wells in the system Si1_xGex/Si with x < 0.1 are grown by molecular-beam epitaxy in the mode of periodic Ge molecular flow interruption during the formation of the alloy layer. It allowed an increase in the operating current of the source electron gun, which provided a more stable molecular Ge flow. The grown heterostructures are studied by transmission scanning electron microscopy methods

Keywords

Si1_xGex/Si heterostructures molecular-beam epitaxy quantum wells transmission scanning electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kheng, R. T. Cox, Y. Merle d’Aubigne, et al., Phys. Rev. Lett. 71, 1752 (1993).CrossRefGoogle Scholar
  2. 2.
    A. V. Gorbunov and V. B. Timofeev, Pisma Zh. Eksp. Teor. Fiz. 83, 178 (2006) [JETP Lett. 83, 146 (2006)].Google Scholar
  3. 3.
    T. P. Pearsall, J. Bevk, L. C. Feldman et al., Phys. Rev. 58, 729 (1987).Google Scholar
  4. 4.
    E. Kasper, H. Kibbel, and H. Jorke, Phys. Rev. B 38, 3599 (1988).CrossRefGoogle Scholar
  5. 5.
    T. P. Persall, J. Bevk, L. C. Feldman, et al., Phys. Rev. Lett. 58, 729 (1987).CrossRefGoogle Scholar
  6. 6.
    Yu. G. Sadofyev, V. P. Martovitsky, and M. A. Bazalevsky, Izv. Ross. Akad. Nauk. Ser. Fiz 78, 47 (2014) [Bull. Russ. Acad. Sci.: Phys. 78, 29 (2014)].Google Scholar
  7. 7.
    V. V. Roddatis, A. L. Vasiliev, and M. V. Kovalchuk, J. Phys.: Conf. Ser. 471, 012044 (2013).Google Scholar
  8. 8.
    B. Gallas, I. Berbezier, A. Ronda, and J. Derrien, Thin Solid Films 294, 22 (1997).CrossRefGoogle Scholar
  9. 9.
    Electron-Hole Droplets in Semiconductors, Ed. by C. D. Jeffries and L.V. Keldysh (North-Holland, Amsterdam, 1983).Google Scholar
  10. 10.
    C. G. Van de Walle and R. M. Martin, Phys. Rev. B 34, 5621 (1986).CrossRefGoogle Scholar
  11. 11.
    L. Keldysh, Phys. Status Solidi A 164, 3 (1997).CrossRefGoogle Scholar
  12. 12.
    L. Yang, J. R. Watling, R. C. W. Wilkins, et al., Semicond. Sci. Technol. 19, 1174 (2004).CrossRefGoogle Scholar
  13. 13.
    J.-H. Park, M. Kurosawa, N. Kawabata, et al., Thin Solid Films 520, 3293 (2012).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • I. P. Kazakov
    • 1
  • A. V. Klekovkin
    • 1
    • 2
    Email author
  • V. A. Tsvetkov
    • 1
  • M. A. Akmaev
    • 1
  • O. V. Uvarov
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Ultrahigh Frequency Semiconductor ElectronicsRussian Academy of SciencesMoscowRussia
  3. 3.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations