Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 6, pp 170–175 | Cite as

Features of Copper Vapor Laser Emission Excited by Pulse-Periodic HF Discharge

  • V. M. Batenin
  • V. T. Karpukhin
  • M. M. Malikov
  • V. Ya. Mendeleev
  • M. A. Kazaryan
  • R. A. Zakharyan
  • N. A. Lyabin
Article
  • 11 Downloads

Abstract

The results of numerical studies of pulsed radiation of the induction copper vapor laser are presented. The laser is excited by trains of high-frequency (10–70 MHz) electric current oscillations. Trains follow one after another with a frequency in 2–17 kHz. The features and variety of obtained laser radiation pulse shapes and their applicability to diagnostic purposes and other practical problems are discussed.

Keywords

HF discharge copper vapor laser laser kinetics radiation pulses shape peak power 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Batenin, P. A. Bokhan, V. V. Buchanov, et al., Self-Terminating Metal Atom Lasers. Ed. by V.M. Batenina (Fizmatlit, Moscow, 2011), p. 610 [in Russian].Google Scholar
  2. 2.
    A. G. Grigoryants, M. A. Kazaryan, and N. A. Lyabin, Copper Vapor Lasers: Design, Characteristics, and Application (Fizmatlit, Moscow, 2005), p. 312 [in Russian].Google Scholar
  3. 3.
    G. S. Evtushenko, M. A. Kazaryan, S. N. Torgaev, et al., Fast Intensifier Based on Induced Transitions in Metal Vapors (STT, Tomsk, 2016), p. 246 (Ser. “Radiation. Beams. Plasma.”, No. 1) [in Russian].Google Scholar
  4. 4.
    O. I. Buzhinskij, N. N. Vasiliev, A. I. Moshkunov, et al., Fusion Eng. Des. 60, 141 (2002).CrossRefGoogle Scholar
  5. 5.
    V. D. Burlakov, V. V. Zuev, G. S. Evtushenko, et al., Opt. Atmos. Okeana 6, 326 (1993).Google Scholar
  6. 6.
    V. M. Batenin, M. A. Kazaryan, V. T. Karpukhin, et al., Plasma Phys. Rep. 42, 1057 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    V. M. Batenin, M. A. Kazaryan, V. T. Karpukhin, and M. M. Malikov, Opt. Atmos. Okeana 29, 112 (2016). DOI: 10.15372/AOO20160205.Google Scholar
  8. 8.
    V. M. Batenin, M. A. Kazaryan, V. T. Karpukhin, and M. M. Malikov, High Temp. 55, 678 (2017).CrossRefGoogle Scholar
  9. 9.
    F. A. Gubarev, V. F. Fedorov, K. V. Fedorov, et al., Kvant. Elektron. 46, 57 (2016) [Quantum Electron. 46, 57 (2016)].ADSCrossRefGoogle Scholar
  10. 10.
    A. Yu. Varaksin, Teplofiz. Vys. Temp. 54, 430 (2016) [High Temp. 54, 409 (2016)].Google Scholar
  11. 11.
    A. Yu. Varaksin, M. E. Romash, and V. N. Kopeitsev, Dokl. Akad. Nauk 456, 159 (2014) [Dokl. Phys. 59, 203 (2014)].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. M. Batenin
    • 1
  • V. T. Karpukhin
    • 1
  • M. M. Malikov
    • 1
  • V. Ya. Mendeleev
    • 1
  • M. A. Kazaryan
    • 2
  • R. A. Zakharyan
    • 3
  • N. A. Lyabin
    • 4
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Tarusa Branch of the Prokhorov General Physics InstituteRussian Academy of SciencesKaluga oblast, TarusaRussia
  4. 4.Research and Production Corporation “Istok”Fryazino, Moscow oblastRussia

Personalised recommendations