Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 60, Issue 2, pp 125–138 | Cite as

Corrosion of Carbon Steel and Cast Iron in a Gas Phase over Salt Melts Used in the Magnesium Industry

  • I. M. KomelinEmail author
  • A. P. LysenkoEmail author
  • D. S. KondratevaEmail author
METALLURGY OF NONFERROUS METALS
  • 1 Downloads

Abstract

Corrosion tests of SCh15 cast iron, St.3, and St.3 with an aluminized coating are performed in certain compositions of salt melts of 10% MgCl2–KCl–NaCl and 10% MgCl2–KCl–NaCl–CaCl2 systems with concentrations of 10, 25, and 40% CaCl2, as well as in the 10% MgCl2–45% KCl–20% NaCl–25% NaBr melt and in a gas phase over these melts at 700°C. Corrosion rates of metallic samples are found by a gravimetric method. Concentrations of impurities of halogenides and hydrogen halogenides in air blown through a reactor with melts and samples are determined by the chemical analysis of absorption solutions. It is shown that the aluminizing of carbon steel can decrease the corrosion rate in a gas phase over a salt melt by a factor of 5–70. The mechanism of formation of gases aggressive with respect to carbon steel and cast iron in atmospheric air contacting with the salt chloride melt is considered. The acceleration of the formation of hydrogen chrloride and chlorine during the interaction of the salt melt with atmospheric air under the effect of corrosion products of iron is revealed.

Keywords:

magnesium salt melts hydrolysis hydrogen chloride chlorine steel cast iron corrosion rate in the gas phase 

Notes

REFERENCES

  1. 1.
    Moskvitin, V.I., Nikolaev, I.V., and Fomin, B.A., Metallurgiya legkikh metallov (Metallurgy of Light Metals), Moscow: Intermet Inzhiniring, 2005.Google Scholar
  2. 2.
    D’yachenko, A.N., Kraidenko, R.I., and Kurchenko, E.I., Corrosion resistance of metals and alloys in the fluoride system, Vestn. Perm. Nats. Issled. Polytekh. Univ. Ser. Mashinostr., 2017, vol. 19, no. 4.  https://doi.org/10.15593/2224-9877/2017.4.05
  3. 3.
    Barabanov, V.G., Zotikov, V.S., Limonova, L.P., Maksimov, B.N., Semerikova, A.I., and Stepanov, V.P., Korroziya oborudovaniya v proizvodstve galogensoderzhashchikh veshchestv: Spravochnoe izdanie (Corrosion of Equipment in the Production of Halogen-Containing Substances: Reference Book), Zotikov, V.S, Ed., St. Petersburg: TEZA, 1998.Google Scholar
  4. 4.
    Reznikov, I.L., Tanaev, A.F., and Ukshe, N.S., Corrosion of cast iron, carbon steel, and chromium–nickel steels at 400–600°C in air containing HCl, Cl2, H2O, and SO2, Zashch. Met., 1972, vol. 8, no. 2, pp. 157–162.Google Scholar
  5. 5.
    Putina, O.A., Investigation into the nickel and steel corrosion in molten chlorides of alkaline and alkali-earth metals and in liquid magnesium, Cand. Sci. (Chem) Dissertation, Sverdlovsk: UPI, 1973.Google Scholar
  6. 6.
    Barannik, I.A., Komelin, I.M., Sikorskaya, I.L., and Zhurov, V.V., RF Patent 41575, 2009.Google Scholar
  7. 7.
    Nikolaev, M.M., Yazev, V.D., Kashkarov, I.A., Rymkevich, D.A., and Chutkov, A.P., RF Patent 2283886, 2006.Google Scholar
  8. 8.
    Gribov, V.I., Mikhailov, A.O., and Ryaposov, Yu.A., RF Patent 2400685, 2010.Google Scholar
  9. 9.
    Gilad Golub, Katsnelson Gennary, Zinn Menachem, and Aghion Eliyahu, US Patent 6132490, 2000.Google Scholar
  10. 10.
    Komelin, I.M., Barannik, I.A., Petriv, M.I., and Zhurov, V.V., RF Patent 36141 1999.Google Scholar
  11. 11.
    Barannik, I.A., Komelin, I.M., Gerb, A.P., and Petriv, M.I., RF Patent 12704, 2005.Google Scholar
  12. 12.
    Putina, O.A., Putin, A.A., Gulyakin, A.I., Nechaev, N.P., Rubel’, O.A., Lyamin, S.G., Novikov, S.M., Zhulanov, N.K., Belkin, N.A., Temnikov, V.V., and Remeslov, M.N., RF Patent 2217512, 2002.Google Scholar
  13. 13.
    Teterin, V.V., Bezdolya, I.N., Shundikov, N.A., Mikhailov, E.F., and Paderina, N.S., RF Patent 2407813, 2009.Google Scholar
  14. 14.
    Kochergin, V.P., High-temperature corrosion of transition metals in ionic melts, Soros. Obraz. Zh., 1997, no. 8, pp. 60–65.Google Scholar
  15. 15.
    Kochergin, V.P., Putina, O.A., Devyatkin, V.N., and Kanaeva, E.T., Revisiting steady-state potential of steel St.3 in molten chlorides of sodium, potassium, and alkali-earth metals, Tr. VAMI, 1971, no. 75, pp. 51–55.Google Scholar
  16. 16.
    Kochergin, V.P. and Stolyarova, G.I., Dissolution of iron in molten mixtures of chlorides of lithium and potassium, sodium and potassium, Zh. Prikl. Khim., 1956, no. 5, pp. 730–733.Google Scholar
  17. 17.
    Smirnov, M.V., Krasil’nikova, N.A., and Ozeryanaya, I.N., Interaction of iron with pure chlorides of alkali metals and solutions of hydrogen chloride in them, Tr. Inst. Elektrokhim. UNTs AN SSSR, 1970, no. 16, pp. 78–81.Google Scholar
  18. 18.
    Lukmanova, G.L. and Vil’nyanskii, Ya.E., Solubility of certain gases in the melt of metal chlorides, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 1966, vol. 9, no. 4, pp. 537–540.Google Scholar
  19. 19.
    Ozeryanaya, I.N., Tkhai, V., and Smirnov, M.V., Solubility of hydrogen chloride in molten magnesium and strontium chlorides, in collected articles: Elektrokhimiya rasplavlennykh solevykh i tverdykh elektrolitov (Electrochemistry of molten salt and solid electrolytes), Tr. Inst. Elektrokhim. UNTs AN SSSR, 1973, no. 19, pp. 13–16.Google Scholar
  20. 20.
    Nekrasov, V.N., Fizicheskaya khimiya rastvorov galogenov v galogenidnykh rasplavakh (Physical Chemistry of Halogen Solutions in Halide Melts), Moscow: Nauka, 1992.Google Scholar
  21. 21.
    Novozhilov, A.L., Thermodynamics and structure of solutions of gases and water vapors in molten salts, Extended Abstract of Doctoral (Chem.) Dissertation, Stavropol’: Inst. Elektrokhim. UNTs AN SSSR, 1986.Google Scholar
  22. 22.
    Novozhilov, A.L., Gribova, E.I., and Devyatkin, V.N., Investigation into the state of HCl in molten chlorides of alkaline and alkali-earth metals by the IR spectroscopy method, Zh. Neorg. Khim., 1972, vol. 17, no. 8, pp. 2078–2080.Google Scholar
  23. 23.
    Novozhilov, A.L., Solubility of hydrogen chloride in the melts of the KCl–MgCl2 system, Zh. Neorg. Khim., 1984, vol. 29, no. 1, pp. 218–221.Google Scholar
  24. 24.
    Novozhilov, A.L, Gribova, E.I., and Devyatkin, V.N., Solubility of hydrogen chloride in molten chlorides of alkali-earth metals, Zh. Neorg. Khim., 1972, vol. 17, no. 9, pp. 2570–2572.Google Scholar
  25. 25.
    Putina, O.A., Bondarev, S.N., Vyatkin, I.P., Kanaev, I.E., and Brandman, O.I., Corrosion resistance of metal structures of the continuous magnesium refining furnace, in collected articles: Proizvodstvo magniya i titana (Production of Titanium and Magnesium), Tr. VAMI, 1972, no. 883, pp. 64–68.Google Scholar
  26. 26.
    Strelets, Kh.L. and Desyatnikov, O.G., Density of molten salts of the isoconcentration section (10 wt % MgCl2) of the MgCl2–CaCl2–NaCl–KCl system, Tr. VAMI, 1957, no. 39, pp. 401–412.Google Scholar
  27. 27.
    Tomashov, N.D., Zhuk, N.P., Titov, V.A., and Vedeneeva, M.A., Laboratornye raboty po korrozii i zashchite metallov (Laboratory Works on Corrosion and Protection of Metals), Moscow: Metallurgiya, 1971.Google Scholar
  28. 28.
    Zabyelin, I.V., Komelin, I.M., Barannik, I.A., and Sikorskaya, I.L., On specific features of operating crucibleless salt-bath furnaces, in: Magnesium—Science, Technology, and Applications, Mater. Sci. Forum, 2005, vol. 488–489, pp. 89–94. doi 10.4028/www.scientific.net/MSF.488-489.89.Google Scholar
  29. 29.
    Furman, A.A., Neorganicheskie khloridy (Inorganic Chlorides), Moscow: Khimiya, 1980.Google Scholar
  30. 30.
    Pechkovskii, V.V., Aleksandrovich, Kh.M., and Pinaev, G.F., Tekhnologiya kaliinykh udobrenii (Technology of Potassium Fertilizers), Minsk: Vysheishaya Shkola, 1968.Google Scholar
  31. 31.
    Loginov, N.A. and Oleinikova, V.A., Equilibrium concentration of Fe3+ in NaCl, (NaCl–KCl), KCl, and CsCl melts in equilibrium with iron, Rasplavy, 2000, no. 6, pp. 27–30.Google Scholar
  32. 32.
    Pechkovskii, V.V. and Vorob’ev, N.I., Thermochemical transformations of iron chlorides, Zh. Neorg. Khim., 1964, vol. IX, no. 1, pp. 12–19.Google Scholar
  33. 33.
    Latina, Z.I. and Furman, A.A., Interaction of iron chloride with iron oxide, Zh. Prikl. Khim., 1970, no. 4, pp. 830–834.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations