Russian Journal of Non-Ferrous Metals

, Volume 59, Issue 6, pp 617–623 | Cite as

Prediction of Misruns in ML5 (AZ91) Alloy Casting and Alloy Fluidity Using Numerical Simulation

  • A. V. PetrovaEmail author
  • V. E. BazhenovEmail author
  • A. V. KoltyginEmail author


Predicting the misrun formation in thin-walled castings of magnesium alloys is a critical task for foundry. The computer simulation of casting processes can be used to solve this problem. Adequate results of simulation can be attained in the presence of the correct thermal properties of the alloy and a mold in a wide temperature range, interface heat-transfer coefficient between the casting and a mold, and the critical solid fraction (at which the melt flow in a mold is stopped). In this work, the interface heat-transfer coefficient between the ML5 (AZ91) magnesium alloy and a no-bake sand mold is found by comparing simulation spiral test lengths with experimental spiral test lengths under the same pouring conditions. Its values above the liquidus temperature are hL = 1500 W/(m2 K) at pouring temperatures of 670 and 740°C and hL = 1800 W/(m2 K) at 810°C. Below the solidus temperature, hS = 600 W/(m2 K). The critical solid fraction for the ML5 (AZ91) magnesium alloy was also determined for no-bake mold casting (with a cooling rate of ~2 K/s)—its value was 0.1–0.15. The critical solid fraction is refined by comparing the position of misruns by the results of simulation and in an actual “Protective cap” ML5 (AZ91) alloy casting poured into the no-bake mold. Castings are poured at temperatures of 630 and 670°C, and the critical solid fraction is 0.1 in both cases.


fluidity simulation magnesium alloy coherency point spiral fluidity test ProCast misruns 



This study was supported by the Ministry of Education and Science of the Russian Federation, contract no. 03.G25.31.0274 dated May 27, 2017, and a Grant of the President of the Russian Federation to young scientists and postgraduates who are carrying out scientific investigations and developments in the priority directions of the Russian Federation’s economy modernization (2016–2018 contest).


  1. 1.
    Jakumeit, J., Subasic, E., and Bünck, M., Prediction of misruns in thin wall castings using computational simulation, in: Shape Casting: 5th Int. Symp., San Diego: Wiley, 2014, pp. 253-260.Google Scholar
  2. 2.
    Humphreys, N.J., McBride, D., Shevchenko, D.M., Croft, T.N., Withey, P., Green, N.R., and Cross, M., Modelling and validation: Casting of Al and TiAl alloys in gravity and centrifugal casting processes, Appl. Math. Model., 2013, vol. 37, nos. 14–15, pp. 7633–7643.Google Scholar
  3. 3.
    Di Sabatino, M. and Arnberg, L., A review on the fluidity of Al based alloys, Metall. Sci. Technol., 2004, vol. 22, no. 1, pp. 9–15.Google Scholar
  4. 4.
    Pikunov, M.V., Plavka metallov, kristallizatsiya splavov, zatverdevanie otlivok: Uchebnoe posobie dlya vuzov (Melting of Metals, Crystallization of Alloys, and Solidification of Castings: Textbook for Higher School), Moscow: MISiS, 2005.Google Scholar
  5. 5.
    Di Sabatino, M., Arnberg, L., Brusethaug, S., and Apelian, D., Fluidity evaluation methods for Al–Mg–Si alloys, Int. J. Cast Met. Res., 2006, vol. 19, pp. 94–97.CrossRefGoogle Scholar
  6. 6.
    Li, Y., Wu, G., Chen, A., Liu, W., Wang, Y., and Zhang, L., Effects of processing parameters and addition of flame-retardant into moulding sand on the microstructure and fluidity of sand-cast magnesium alloy Mg–10Gd–3Y–0.5Zr, J. Mater. Sci. Technol., 2017, vol. 33, no. 6, pp. 558–566.CrossRefGoogle Scholar
  7. 7.
    Hua, Q., Gao, D., Zhang, H., Zhang, Y., and Zhai, Q., Influence of alloy elements and pouring temperature on the fluidity of cast magnesium alloy, Mater. Sci. Eng. A, 2007, vol. 444, nos. 1–2, pp. 69–74.Google Scholar
  8. 8.
    Koltygin, A.V. and Plisetskaya, I.V., Influence of small calcium additives on fluidity of magnesium alloys, Liteishchik Rossii, 2011, no. 6, pp. 41–43.Google Scholar
  9. 9.
    Ravi, K.R., Pillai, R.M., Amaranathan, K.R., Pai, B.C., and Chakraborty, M., Fluidity of aluminum alloys and composites: A review, J. Alloys Compd., 2008, vol. 456, nos. 1–2, pp. 201–210.Google Scholar
  10. 10.
    Dahle, A.K. and Arnberg, L., Development of strength in solidifying aluminium alloys, Acta Mater., 1997, vol. 45, no. 2, pp. 547–559.CrossRefGoogle Scholar
  11. 11.
    Veldman, N.L., Dahle, A.K., StJohn, D.H., and Arnberg, L., Dendrite coherency of Al–Si–Cu alloys, Metall. Mater. Trans. A, 2001, vol. 32, no. 1, pp. 147–155.CrossRefGoogle Scholar
  12. 12.
    Dahle, A.K., Tundel, P.A., Paradies, C.J., and Arnberg, L., Effect of grain refinement on the fluidity of two commercial Al–Si foundry alloys, Metall. Mater. Trans. A, 1996, vol. 27, no. 8, pp. 2305–2313.CrossRefGoogle Scholar
  13. 13.
    Kryl, M., Tacski, T., Matula, G., Snopinski, P., and Tomiczek, A.E., Analysis of crystallisation process of cast magnesium alloys based on thermal derivative analysis, Arch. Metall. Mater., 2015, vol. 60, no. 4, pp. 2993–2999.CrossRefGoogle Scholar
  14. 14.
    Liang, S.M., Chen, R.S., Blandin, J.J., Suery, M., and Han, E.H., Thermal analysis and solidification pathways of Mg–Al–Ca system alloys, Mater. Sci. Eng. A, 2008, vol. 480, nos. 1–2, pp. 365–372.Google Scholar
  15. 15.
    Gourlay, C.M., Meylan, B., and Dahle, A.K., Shear mechanisms at 0–50% solid during equiaxed dendritic solidification of an AZ91 magnesium alloy, Acta Mater., 2008, vol. 56, no. 14, pp. 3403–3413.CrossRefGoogle Scholar
  16. 16.
    Gourlay, C.M., Meylan, B., and Dahle, A.K., Rheological transitions at low solid fraction in solidifying magnesium alloy AZ91, Mater. Sci. Forum, 2007, vol. 561–565, pp. 1067–1070.Google Scholar
  17. 17.
    Hou, D.-H., Liang, S.-M., Chen, R.-S., Dong, C., and Han, E.-H., Effects of Sb content on solidification pathways and grain size of AZ91 magnesium alloy, Acta Metal. Sinica (Engl. Lett.), 2015, vol. 28, no. 1, pp. 115–121.Google Scholar
  18. 18.
    Barber, L.P., Characterization of the solidification behavior and resultant microstructures of magnesium-aluminum alloys: A Master Degree Thesis, Worchester: Worchester Polytech. Inst., 2004.Google Scholar
  19. 19.
    Rajaraman, R. and Velraj, R., Comparison of interfacial heat transfer coefficient estimated by two different techniques during solidification of cylindrical aluminum alloy casting, Heat Mass Transfer, 2008, vol. 44, no. 9, pp. 1025–1034.CrossRefGoogle Scholar
  20. 20.
    Chen, L., Wang, Y., Peng, L., Fu, P., and Jiang, H., Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy in silica sand, Exp. Thermal Fluid Sci., 2014, vol. 54, pp. 196–203.CrossRefGoogle Scholar
  21. 21.
    Wang, D., Zhou, C., Xu, G., and Huaiyuan, A., Heat transfer behavior of top side-pouring twin-roll casting, J. Mater. Process. Technol., 2014, vol. 214, no. 6, pp. 1275–1284.CrossRefGoogle Scholar
  22. 22.
    Griffiths, W. and Kawai, K., The effect of increased pressure on interfacial heat transfer in the aluminium gravity die casting process, J. Mater. Sci., 2010, vol. 45, no. 9, pp. 2330–2339.CrossRefGoogle Scholar
  23. 23.
    Sun, Z., Hu, H., and Niu, X., Determination of heat transfer coefficients by extrapolation and numerical inverse methods in squeeze casting of magnesium alloy AM60, J. Mater. Process. Technol., 2011, vol. 211, no. 8, pp. 1432–1440.CrossRefGoogle Scholar
  24. 24.
    Nishida, Y., Droste, W., and Engler, S., The air-gap formation process at the casting-mold interface and the heat transfer mechanism through the gap, Metall. Trans. B, 1986, vol. 17, no. 4, pp. 833–844.CrossRefGoogle Scholar
  25. 25.
    Tikhomirov, M.D., Simulation of thermal and shrinkage processes during the solidification of castings of high-strength aluminum alloys and development of the computer analysis system of the casting technology, Extended Abstract of Cand. Sci. (Eng.) Dissertation, St. Petersburg: SPb Gos. Politekh. Univ., 2004.Google Scholar
  26. 26.
    Bouchard, D., Leboeuf, S., Nadeau, J.P., Guthrie, R.I.L., and Isac, M., Dynamic wetting and heat transfer at the initiation of aluminum solidification on copper substrates, J. Mater. Sci., 2009, vol. 44, no. 8, pp. 1923–1933.CrossRefGoogle Scholar
  27. 27.
    Lu, S.-L., Xiao, F.-R., Zhang, S.-J., Mao, Y.-W., and Liao, B., Simulation study on the centrifugal casting wet-type cylinder liner based on ProCAST, Appl. Thermal Eng., 2014, vol. 73, no. 1, pp. 512–521.CrossRefGoogle Scholar
  28. 28.
    Di Sabatino, M., Arnberg, L., and Bonollo, F., Simulation of fluidity in Al–Si alloys, Metall. Sci. Technol., 2005, vol. 23, no. 1, pp. 3–10.Google Scholar
  29. 29.
    Bazhenov, V.E., Petrova, A.V., and Koltygin, A.V., Simulation of fluidity and misrun prediction for the casting of 356.0 aluminum alloy into sand molds, Int. J. Metalcasting, 2018, vol. 12, no. 3, pp. 514–522.CrossRefGoogle Scholar
  30. 30.
    Palumbo, G., Piglionico, V., Piccininni, A., Guglielmi, P., Sorgente, D., and Tricarico, L., Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis, Appl. Thermal Eng., 2015, vol. 78, pp. 682–694.CrossRefGoogle Scholar
  31. 31.
    Zhmurikov, E.I., Savchenko, I.V., Stankus, S.B., and Tecchio, L., Measurements of thermal properties of graphite composites for a neutron target converter, Vestn. NGU. Ser. Fiz., 2011, vol. 6, no. 2, pp. 77–84.Google Scholar
  32. 32.
    Bazhenov, V.E., Koltygin, A.V., Tseloval’nik, Yu.V., and Sannikov, A.V., Determination of interface heat transfer coefficient between aluminum casting and graphite mold, Russ. J. Non-Ferrous Met., 2017, vol. 58, no. 2, pp. 114–123.CrossRefGoogle Scholar
  33. 33.
    Bazhenov, V.E., Petrova, A.V., Koltygin, A.V., and Tseloval’nik, Yu.V., Determination of heat transfer coefficient between AZ91 magnesium alloy casting and no-bake mold, Tsvetn. Met., 2017, no. 8, pp. 89–96.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations