Russian Journal of Non-Ferrous Metals

, Volume 59, Issue 6, pp 698–708 | Cite as

Structure, Mechanical Properties, and Oxidation Resistance of MoSi2, MoSiB, and MoSiB/SiBC Coatings

  • Ph. V. Kiryukhantsev-KorneevEmail author
  • A. Yu. PotaninEmail author


Single-layer MoSi2, MoSiB, and multilayer MoSiB/SiBC coatings are fabricated by magnetron sputtering. Coating structures are investigated using X-ray diffraction, a scanning electron microscopy, and glow-discharge optical emission spectroscopy. Mechanical properties of coatings are determined by nanoindentation. The thermal stability of coatings is studied in a temperature range of 600–1200°C and oxidation resistance is studied upon heating to 1500°C. It is established that single-layer MoSiB coatings possess a hardness of 27 GPa, elasticity modulus of 390 GPa, and elastic recovery of 48%. They can also resist oxidation up to 1500°C inclusively, which is caused by the formation of the SiO2-based protective film on their surface. The MoSi2 coatings can have hardness comparable to the hardness of MoSiB coatings, but they are somewhat worse than them in regards to oxidation resistance. Multilayer MoSiB/SiBC coatings have hardness 23–27 GPa and oxidation resistance restricted by 1500°C, but they herewith have higher elastoplastic properties when compared with MoSiB.


MoSi2 MoSiB multilayer MoSiB/SiBC coatings SHS hot pressing magnetron sputtering hardness hardness, oxidation resistance thermal stability 



We than T.B. Sagalova, N.V. Shvyndina, and Doctor of Sci. (Eng.) M.I. Petrzhik, collaborators at MISiS, for help in performing investigations by XRD and SEM, as well as nanoindentation measurements.

This study was supported by the Russian Foundation for Basic Research, project no. 18-08-00269.


  1. 1.
    Hague, J.R., Lynch, J.F., and Rudnick, A., Refractory Ceramics for Aerospace. A Material Selection Handbook, Amer. Ceram. Soc., 1964.Google Scholar
  2. 2.
    Lemberg, J.A. and Ritchie, R.O., Mo–Si–B alloys for ultra-high-temperature applications, Adv. Mater., 2012, vol. 24, pp. 3445–3480.CrossRefGoogle Scholar
  3. 3.
    Shul’ts, M.M., Appen, A.A., Borisenko, A.I., Gorbunov, N.S., Kharitonov, N.P., and Veselov, P.A., Zharostoikie pokrytiya dlya zashchity konstruktsionnykh materialov (Heat-Resistant Coatings for the Protection of Constructional Materials), Leningrad: Nauka, 1977.Google Scholar
  4. 4.
    Pang, J. and Blackwood, D.J., Corrosion of titanium alloys in high temperature near anaerobic seawater, Corros. Sci., 2016, vol. 105, pp. 1–7.CrossRefGoogle Scholar
  5. 5.
    Totemeier, T.C., Wright, R.N., and Swank, W.D., FeAl and Mo–Si–B intermetallic coatings prepared by thermal spraying, Intermetallics, 2004, vol. 12, pp. 1335–1344.CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Wanga, D., and Yand, J., Preparation and characterization of MoSi2/MoB composite coating on Mo substrate, J. Alloys Compd., 2014, vol. 589, pp. 384–388.CrossRefGoogle Scholar
  7. 7.
    Zhang, Y., Li, H., Ren, J., and Li, K., Microstructure and oxidation resistance of Si–Mo–B coating for C/Si coated carbon/carbon composites, Corros. Sci., 2013, vol. 72, pp. 150–155.CrossRefGoogle Scholar
  8. 8.
    Kuznetsov, S.A., Rebrov, E.V., Mies, M.J.M., de Croon, M.H.J.M., and Schouten, J.C., Synthesis of protective Mo–Si–B coatings in molten salts and their oxidation behavior in an air–water mixture, Surf. Coat. Technol., 2006, vol. 201, pp. 971–978.CrossRefGoogle Scholar
  9. 9.
    Kudryashov, A.E., Lebedev, D.N., Potanin, A.Yu., and Levashov, E.A., Structure and properties of coatings produced by pulsed electrospark deposition on nickel alloy using Mo–Si–B electrodes, Surf. Coat. Technol., 2018, vol. 335, pp. 104–117.CrossRefGoogle Scholar
  10. 10.
    Perepezko, J.H., Sossaman, T.A., and Taylor, M., Environmentally resistant Mo–Si–B-based coatings, J. Them. Spray Tech., 2017, vol. 26, pp. 929–940.CrossRefGoogle Scholar
  11. 11.
    Ritt, P., Sakidja, R., and Perepezko, J.H., Mo–Si–B based coating for oxidation protection of SiC–C composites, Surf. Coat. Technol., 2012, vol. 206, pp. 4166–4172.CrossRefGoogle Scholar
  12. 12.
    Ming’e, W., Guojia, M., Xing, L., and Chuang, D., Morphology and mechanical properties of TiN coatings prepared with different PVD methods, Rare Met. Mater. Eng., 2016, vol. 45, pp. 3080–3084.CrossRefGoogle Scholar
  13. 13.
    Chu, C.W., Jang, J.S.C., Chen, H.W., and Chuang, T.L., Enhanced wear resistance of the Cr-based thin film coating on micro drill by doping with W–C–N, Thin Solid Films, 2009, vol. 517, pp. 5197–5201.CrossRefGoogle Scholar
  14. 14.
    Lawal, J., Kiryukhantsev-Korneev, P., Matthews, A., and Leyland, A., Mechanical properties and abrasive wear behavior of Al-based PVD amorphous/nanostructured coatings, Surf. Coat. Technol., 2017, vol. 310, pp. 59–69.CrossRefGoogle Scholar
  15. 15.
    Kiryukhantsev-Korneev, F.V., Sheveiko, A.N., Komarov, V.A., Blanter, M.S., Skryleva, E.A., Shirmanov, N.A., Levashov, E.A., and Shtansky, D.V., Nanostructured Ti–Cr–B–N and Ti–Cr–Si–C–N coatings for hard-alloy cutting tools, Russ. J. Non-Ferrous Met., 2011, vol. 52, pp. 311–318.CrossRefGoogle Scholar
  16. 16.
    Wu, J., Wu, B.H., Ma, D.L., Xie, D., Wu, Y.P., Chen, C.Z., Li, Y.T., Sun, H., Huang, N., and Lenga, Y.X., Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering (HPPMS), Surf. Coat. Technol., 2017, vol. 315, pp. 258–267.CrossRefGoogle Scholar
  17. 17.
    Kiryukhantsev-Korneev, Ph.V., Pierson, J.F., Kuptsov, K.A., and Shtansky, D.V., Hard Cr–Al–Si–B–(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target, Appl. Surf. Sci., 2014, vol. 314, pp. 104–111.CrossRefGoogle Scholar
  18. 18.
    Kiryukhantsev-Korneev, Ph.V., Pierson, J.F., Bychkova, M.Y., Manakova, O.S., Levashov, E.A., and Shtansky, D.V., Comparative study of sliding, scratching and impact-loading behavior of hard CrB2 and Cr‒B–N films, Tribol. Lett., 2016, vol. 63, pp. 1–11.CrossRefGoogle Scholar
  19. 19.
    Audronis, M., Leyland, A., Matthews, A., Kiryukhantsev-Korneev, F.V., Shtansky, D.V., and Levashov, E.A., The structure and mechanical properties of Ti–Si–B coatings deposited by DC and pulsed-DC unbalanced magnetron sputtering, Plasma Process. Polym., 2007, vol. 4, pp. 687–692.CrossRefGoogle Scholar
  20. 20.
    Vančo, M., Krmela, J., and Pešlová, F., The use of PVD coating on natural textile fibers, Proc. Eng., 2016, vol. 136, pp. 341–345.CrossRefGoogle Scholar
  21. 21.
    Shtansky, D.V., Grigoryan, A.S., Toporkova, A.K., Arkhipov, A.V., Sheveyko, A.N., and Kiryukhantsev-Korneev, Ph.V., Modification of polytetraf luoroethylene implants by depositing TiCaPCON films with and without stem cells, Surf. Coat. Technol., 2011, vol. 206, pp. 1188–1195.CrossRefGoogle Scholar
  22. 22.
    Wenbin, F., Mingjiang, D., Chunbei, W., Mingchun, Z., Liang, H., Huijun, H., and Songsheng, L., Magnetron sputtering preparation and properties of SiC/MoSi2 oxidation protective coating for carbon/carbon composites prepared, Met. Mater. Eng., 2016, vol. 45, pp. 2543–2548.CrossRefGoogle Scholar
  23. 23.
    Yanping Xia, Peihong Wang, Shiwei Shi, Miao Zhang, Gang He, Jianguo Lv, and Zhaoqi Sun, Deposition and characterization of AZO thin films on flexible glass substrates using DC magnetron sputtering technique, Ceram. Int., 2017, vol. 43, no. 5, pp. 4536–4544.CrossRefGoogle Scholar
  24. 24.
    Tsai, D., Deng, M., Chang, Z., Kuo, B., Chen, E., Chang, S., and Shieu, F., Oxidation resistance and characterization of (AlCrMoTaTi)–Six–N coating deposited via magnetron sputtering, J. Alloys Compd., 2015, vol. 647, pp. 179–188.CrossRefGoogle Scholar
  25. 25.
    Lin, C.H., Duh, J.G., and Yeh, J.W., Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter, Surf. Coat. Technol., 2007, vol. 201, pp. 6304–6308.CrossRefGoogle Scholar
  26. 26.
    Kiryukhantsev-Korneev, Ph.V., Bondarev, A.V., Shtansky, D.V., and Levashov, E.A., Structure and properties of nanocomposite Mo–Si–B–(N) coatings, Protec. Met. Phys. Chem. Surf., 2015, vol. 51, pp. 794–802.CrossRefGoogle Scholar
  27. 27.
    Kiryukhantsev-Korneev, Ph.V., Andreev, S.O., Shvyndina, N.V., Levashov, E.A., Timofeev, A.N., and Shtansky, D.V., The influence of Si concentrations on the oxidation resistance of Mo–Si–B–(N) coatings, Russ. J. Non-Ferrous Met., 2014, vol. 55, pp. 645–651.CrossRefGoogle Scholar
  28. 28.
    Kiryukhantsev-Korneev, Ph.V., Iatsyuk, I.V., Shvindina, N.V., Levashov, E.A., and Shtansky, D.V., Comparative investigation of structure, mechanical properties, and oxidation resistance of Mo–Si–B and Mo–Al–Si–B coatings, Corros. Sci., 2017, vol. 123, pp. 319–327.CrossRefGoogle Scholar
  29. 29.
    Yao, X.-Y., Li, H.-J., Zhang, Y.-L., Ren, J.-J., Yao, D.-J., and Tao, J., A SiC/ZrB2–SiC/SiC oxidation resistance multilayer coating for carbon/carbon composites, Corros. Sci., 2012, vol. 57, pp. 148–153.CrossRefGoogle Scholar
  30. 30.
    Bae, K.-E., Chae, K.-W., Park, J.-K., Lee, W.-S., and Baika, Y.-J., Oxidation behavior of amorphous boron carbide–silicon carbide nano-multilayer thin films, Surf. Coat. Technol., 2015, vol. 276, pp. 55–58.CrossRefGoogle Scholar
  31. 31.
    Fukumoto, N., Ezura, H., Yamamoto, K., Hotta, A., and Suzuki, T., Effects of bilayer thickness and post-deposition annealing on the mechanical and structural properties of (Ti,Cr,Al)N/(Al,Si)N multilayer coatings, Surf. Coat. Technol., 2009, vol. 203, pp. 1343–1348.CrossRefGoogle Scholar
  32. 32.
    Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Levashov, E.A., and Shtansky, D.V., Investigation of the Si–B–C–N coatings deposited by magnetron sputtering on SiBC targets, Russ. J. Non-Ferrous Met., 2015, vol. 56, pp. 540–547.CrossRefGoogle Scholar
  33. 33.
    Levashov, E.A., Pogozhev, Yu.S., Potanin, A.Yu., Kochetov, N.A., Kovalev, D.Yu., Shvyndina, N.V., and Sviridova, T.A., Self-propagating high-temperature synthesis of advanced ceramics in the Mo–Si–B system: Kinetics and mechanism of combustion and structure formation, Ceram. Int., 2014, vol. 40, pp. 6541–6552.CrossRefGoogle Scholar
  34. 34.
    Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Lemesheva, M., Rupasov, S.I., and Levashov, E.A., Investigation of Si–B–C–N coatings produced by ion sputtering of SiBC target, Protect. Met. Phys. Chem. Surf., 2012, vol. 48, pp. 585–590.CrossRefGoogle Scholar
  35. 35.
    Golovin, Yu.I., Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A review, Phys. Solid State, 2008, vol. 50, pp. 2205–2236.CrossRefGoogle Scholar
  36. 36.
    Yuki Itoh, Kennichi Wasikaka, Masashi Satoh, and Shinzo Yoshikado, Fabrication and application of MoSi2 thin-film electric heaters, Key Eng. Mater., 2006, vol. 320, pp. 95–98.CrossRefGoogle Scholar
  37. 37.
    Musil, J., Zeman, P., and Baroch, P., Hard nanocomposite coatings, Comp. Mater. Process., 2014, vol. 4, pp. 325–353.CrossRefGoogle Scholar
  38. 38.
    Chakraborty, S.P., Development of protective coating of MoSi2 over TZM alloy substrate by slurry coating technique, Mater. Today: Proc., 2016, vol. 3, pp. 3071–3076.CrossRefGoogle Scholar
  39. 39.
    Cai, Z., S. Liu S., Xiao L., Fang Z., Lia W., and Zhang, B., Oxidation behavior and microstructural evolution of a slurry sintered Si–Mo coating on Mo alloy at 1650°C, Surf. Coat. Technol., 2017, vol. 324, pp. 182–189.CrossRefGoogle Scholar
  40. 40.
    Wang, Y., Wang, D., Yan, J., and Sun, A., Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying, Appl. Surf. Sci., 2013, vol. 284, pp. 881–888.CrossRefGoogle Scholar
  41. 41.
    Shtansky, D.V. and Lyasotsky, I.V., D’yakonova, N.B., Kiryukhantsev-Korneev, F.V., Kulinich, S.A., Levashov E.A., and Moore J.J. Comparative investigation of Ti–Si–N films magnetron sputtered using Ti5Si3 + Ti and Ti5Si3 + TiN targets, Surf. Coat. Technol., 2017, vol. 182, pp. 204–214.CrossRefGoogle Scholar
  42. 42.
    Saladukhin, I.A., Abadias, G., Uglov, V.V., Zlotski, S.V., Michel, A., and Janse van Vuurend, A., Thermal stability and oxidation resistance of ZrSiN nanocomposite and ZrN/SiNx multilayered coatings: A comparative study, Surf. Coat. Technol., 2017, vol. 332, pp. 428–439.CrossRefGoogle Scholar
  43. 43.
    Ohishi, Y., Kurosaki, K., Suzuki, T., Muta, H., Yamanaka, S., Uchida, N., Tada, T., and Kanayama, T., Synthesis of silicon and molybdenum–silicide nanocrystal composite films having low thermal conductivity, Thin Solid Films, 2013, vol. 534, pp. 238–241.CrossRefGoogle Scholar
  44. 44.
    Chou, T.C. and Nieh, T.G., Phase transformation and mechanical properties of thin MoSi2 films produced by laser processing, Thin Solid Films, 1992, vol. 214, pp. 48–57.CrossRefGoogle Scholar
  45. 45.
    Hidouci, A. and Pelletier, J.M., Microstructure and mechanical properties of MoSi2 coatings produced by laser processing, Mater. Sci. Eng. A, 1998, vol. 252, pp. 17–26.CrossRefGoogle Scholar
  46. 46.
    Fei, X., Niu, Y., Ji, H., Huang, L., and Zheng, X., A comparative study of MoSi2 coatings manufactured by atmospheric and vacuum plasma spray processes, Ceram. Int., 2011, vol. 37, pp. 813–817.CrossRefGoogle Scholar
  47. 47.
    Kiryukhantsev-Korneev, F.V., Novikov, A.V., Sagalova, T.B., Petrzhik, M.I., Levashov, E.A., and Shtansky, D.V., A comparative study of microstructure, oxidation resistance, mechanical, and tribological properties of coatings in Mo–B–(N), Cr–B–(N) and Ti–B–(N) systems, Phys. Met. Metallogr., 2017, vol. 118, pp. 1136–1146.CrossRefGoogle Scholar
  48. 48.
    Kung, H., Jervis, T.R., Hirvonen, J.P., Mitchell, T.E., and Nastasi, M., High-temperature structural stability of MoSi2-based nanolayer composites, J. Vac. Sci. Technol., 1995, vol. 13, no. 3, pp. 1126–1129.CrossRefGoogle Scholar
  49. 49.
    Kondratenko, V.V., Pershin, Yu.P., Poltseva, O.V., Fedorenko, A.I., Zubarev, E.N., Yulin, S.A., Kozhevnikov, I.V., Sagitov, S.I., Chirkov, V.A., Levashov, V.E., and Vinogradov, A.V., Thermal stability of soft X-ray Mo–Si and MoSi2–Si multilayer mirrors, Appl. Optics, 1993, vol. 32, pp. 1811–1816.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations