Russian Journal of Non-Ferrous Metals

, Volume 59, Issue 1, pp 76–81 | Cite as

Kinetics and High-Temperature Oxidation Mechanism of Ceramic Materials in the ZrB2–SiC–MoSi2 System

  • I. V. Iatsyuk
  • A. Yu. Potanin
  • S. I. Rupasov
  • E. A. Levashov
Physical Metallurgy and Heat Treatment
  • 6 Downloads

Abstract

This study is devoted to the fabrication of the ZrB2–SiC–(MoSi2) compact ceramics according to hybrid technology (self-propagating high-temperature synthesis (SHS) + hot pressing), as well as to investigating its phase composition, structure, and high-temperature oxidation kinetics. Reaction mixtures are prepared according to the following scheme: mechanical activation (MA) of Si + C powders; wet admixing of Zr, B, and Si + C MA-mixture powders; and drying mixtures in a drying oven. The ZrB2–SiC SHS composite powder is formed in a reactor in a combustion mode by elemental synthesis. Compact samples with a homogeneous structure and low residual porosity not exceeding 1.3% are formed by hot pressing the SHS powder. Two compositions are selected for testing, notably, the first one calculated for the formation of ZrB2 + 25% SiC; the second composition is similar to the first one, but with the addition of 5% of the MoSi2 commercial powder. The microstructure of the samples is presented by dispersed dark gray rounded SiC grains distributed among light faceted ZrB2 grains. The sample with the MoSi2 additive has a more finely dispersed structure. The high-temperature oxidation of the samples at 1200°C results in the formation of SiO2‒ZrB2–(B2O3) complex oxide films on their surface with a thickness on the order of 20–30 μm, which serve as an efficient diffusion barrier and lower the oxidation rate. Their structure also contains ZrSiO4 complex oxide after prolonged holding (longer than 10 h). In addition, an insignificant weight loss of the samples is observed after 10 h testing, which is caused by the volatilization of gaseous oxidation products (B2O2, CO/CO2, MoO3). The sample with the MoSi2 additive shows better resistance to oxidation.

Keywords

zirconium diboride silicon carbide hot pressing kinetics oxidation structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuwabara, K., Some characteristics and applications of ZrB2 ceramics, Bull. Ceram. Soc. Jpn., 2002, vol. 37, no. 4, pp. 267–271.Google Scholar
  2. 2.
    Brown, A.S., Hypersonic designs with a sharp edge, Aerospace Am., 1997, vol. 35, no. 9, pp. 20–21.Google Scholar
  3. 3.
    Mroz, C., Zirconium diboride, Am. Ceram. Soc. Bull., 1994, vol. 73, no. 6, pp. 141–142.Google Scholar
  4. 4.
    Norasetthekul, S., Eubank, P.T., Bradley, W.L., Bozkurt, B., and Stucker, B., Use of zirconium diboride–copper as an electrode in plasma applications, J. Mater. Sci., 1999, vol. 34, no. 6, pp. 1261–1270.CrossRefGoogle Scholar
  5. 5.
    Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W., and Talmy, I., UHTCs: Ultra-high temperature ceramic materials for extreme environment applications, Interface, 2007, vol. 16, no. 4, pp. 30–36.Google Scholar
  6. 6.
    Grigoriev, O., Galanov, B., Lavrenko, V., Panasyuk, A., Ivanov, S., Koroteev, A., and Nickel, K., Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen, J. Eur. Ceram. Soc., 2010, vol. 30, pp. 2397–2405.CrossRefGoogle Scholar
  7. 7.
    Licheri, R., Orru, R., Musa, C., and Cao, G., Combination of SHS and SPS techniques for fabrication of fully dense ZrB2–ZrC–SiC composites, Mater. Lett., 2008, vol. 62, pp. 432–435.CrossRefGoogle Scholar
  8. 8.
    Wu, W.W., Zhang, G.J., Kan, Y.M., Wang, P.L., Vanmeense, K., Vleugels, J., and Vander, Biest O., Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing, Scr. Mater., 2007, vol. 57, pp. 317–320.CrossRefGoogle Scholar
  9. 9.
    Monteverde, F. and Scatteia, L., Resistance to thermal shock and to oxidation of metal diborides–SiC ceramics for aerospace application, J. Am. Ceram. Soc., 2007, vol. 90, no. 4, pp. 1130–1138.CrossRefGoogle Scholar
  10. 10.
    Monteverde, F., Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2, Appl. Phys., 2006, vol. A82, pp. 329–337.CrossRefGoogle Scholar
  11. 11.
    Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A., and Causey, S.J., Mechanical, thermal and oxidation properties of refractory hafnium and zirconium compounds, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2405–2414.CrossRefGoogle Scholar
  12. 12.
    Grigoriev, O., Galanov, B., Kotenko, V., Ivanov, S., Koroteev, A., and Brodnikovsky, N., Mechanical properties of ZrB2–SiC(ZrSi2) ceramics, J. Eur. Ceram. Soc., 2010, vol. 30, pp. 2173–2181.CrossRefGoogle Scholar
  13. 13.
    Silvestroni, L., Landi, E., Bejtka, K., Chiodoni, A., and Sciti, D., Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 4377–4387.CrossRefGoogle Scholar
  14. 14.
    Silvestroni, L., Meriggi, G., and Sciti, D., Oxidation behavior of ZrB2 composites doped with various transition metal silicides, Corros. Sci., 2014, vol. 83, pp. 281–291.CrossRefGoogle Scholar
  15. 15.
    Makarov, A.V., Bagarat’yan, N.V., Zbezhneva, S.G., Aleshko-Ozhevskaya, L.A., and Georgobiani, T.P., Ionization and fragmentation of B2O2 and BO molecules under the electronic blow, Vestn. Mos. Gos. Univ. Ser. 2. Khim., 2000, vol. 41, no. 4, pp. 227–230.Google Scholar
  16. 16.
    Eremina, E.N., Kurbatkina, V.V., Levashov, E.A., Rogachev, A.S., and Kochetov, N.A., Obtaining the composite MoB material by means of force SHS compacting with preliminary mechanical activation of Mo–10%B mixture, Chem. Sustain. Develop., 2005, vol. 13, pp. 197–204.Google Scholar
  17. 17.
    Fahrenholtz, W.G., Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-depleted region, J. Am. Ceram. Soc., 2007, vol. 90, no. 1, pp. 143–148.CrossRefGoogle Scholar
  18. 18.
    Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Cinibulk, M.K., Modeling oxidation kinetics of SiC-containing refractory diborides, J. Am. Ceram. Soc., 2012, vol. 95, no. 1, pp. 338–349.CrossRefGoogle Scholar
  19. 19.
    Eakins, E., Jayaseelan, D.D., and Lee, W.E., Toward oxidation-resistant ZrB2–SiC ultra high temperature ceramics, Metal. Mater. Trans. A, 2011, vol. 42, no. 4, pp. 878–887.CrossRefGoogle Scholar
  20. 20.
    Gao, D., Zhang, Y., Fu, J., Xu, C., Song, Y., and Shi, X., Oxidation of zirconium diboride–silicon carbide ceramics under an oxygen partial pressure of 200Pa: Formation of zircon, Corros. Sci., 2010, vol. 52, no. 10, pp. 3297–3303.CrossRefGoogle Scholar
  21. 21.
    Silvestroni, L. and Sciti, D., Effects of MoSi2 additions on the properties of Hf-and Zr–B2 composites produced by pressureless sintering, Scr. Mater., 2007, vol. 57, pp. 165–168.CrossRefGoogle Scholar
  22. 22.
    Potanin, A.Yu., Pogozhev, Yu.S., Levashov, E.A., Novikov, A.V., Shvindina, N.V., and Sviridova, T.A., Kinetics and oxidation mechanism of MoSi2–MoB ceramics in the 600–1200°C temperature range, Ceram. Int., 2017, vol. 43, no. 13, pp. 10478–10486.CrossRefGoogle Scholar
  23. 23.
    Iatsyuk, I.V., Pogozhev, Yu.S., Levashov, E.A., Novikov, A.V., Kochetov, N.A., and Kovalev, Yu.D., Peculiarities of production and high-temperature oxidation of SHS ceramics based on zirconium boride and silicide, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metal. Funkts. Pokryt., 2017, no. 1, pp. 29–41.CrossRefGoogle Scholar
  24. 24.
    Iatsyuk, I.V., Pogozhev, Yu.S., and Novikov, A.V., Synthesis of ZrB2–SiC high-temperature ceramics in the combustion mode, Tsvet. Met., 2017, no. 12, pp. 71–77.CrossRefGoogle Scholar
  25. 25.
    Kiryukhantsev-Korneev, P.V., Lemesheva, M., Yatsyuk, I., Shtansky, D.V., and Levashov, E.A., Comparative investigation of Zr–B–(N), Zr–Si–B–(N), and Zr–Al–Si–B–(N) hard coatings, 44th Int. Conf. on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, California: 2017, pp. 50–51.Google Scholar
  26. 26.
    Sciti, D., Guicciardi, S., and Bellosi, A., Properties of pressureless-sintered ZrB2–MoSi2 ceramic composite, J. Am. Ceram. Soc., 2006, vol. 7, pp. 2320–2322.Google Scholar
  27. 27.
    Yu, Y., Luo, R., Xiang, Q., Zhang, Y., and Wanga, T., Antioxidation properties of a BN/SiC/Si3N4–ZrO2–SiO2 multilayer coating for carbon/carbon composites, Surf. Coat. Technol., 2015, vol. 277, pp. 7–14.CrossRefGoogle Scholar
  28. 28.
    Liu, J., Cao, L.-Y., Huang, J.-F., Xin, Y., Yang, W.-D., Fei, J., and Yao, C.-Y., A ZrSiO4/SiC oxidation protective coating for carbon/carbon composites, Surf. Coat. Technol., 2012, vol. 206, pp. 3270–3274.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • I. V. Iatsyuk
    • 1
  • A. Yu. Potanin
    • 1
  • S. I. Rupasov
    • 1
  • E. A. Levashov
    • 1
  1. 1.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations