Asymptotic Distribution of Least Squares Estimators for Linear Models with Dependent Errors: Regular Designs
Article
First Online:
- 7 Downloads
Abstract
We consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result of Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and the error process.We show that for a large class of designs, the asymptotic covariance matrix is as simple as in the independent and identically distributed (i.i.d.) case.We then estimate the covariance matrix using an estimator of the spectral density whose consistency is proved under very mild conditions.
Keywords
linear model least squares estimator short memory processes spectral density2000 Mathematics Subject Classification
62F12 62J05 62M10 62M15Preview
Unable to display preview. Download preview PDF.
References
- 1.T.W. Anderson, The Statistical Analysis of Time Series (Wiley, New York, 2011).Google Scholar
- 2.R. C. Bradley, “Basic Properties of Strong Mixing Conditions”, in Dependence in Probability and Statistics (Oberwolfach, 1985) (Birkhäuser Boston, Boston, MA, 1986), Vol. 11, pp. 165–192.CrossRefGoogle Scholar
- 3.D. R. Brillinger, Time Series: Data Analysis and Theory (SIAM, 2001).CrossRefzbMATHGoogle Scholar
- 4.P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, in Springer Science & Business Media (Springer, 2013).Google Scholar
- 5.J. Dedecker, “A Central Limit Theorem for Stationary Random Fields”, Probab. Theory and Rel. Fields 110 (3), 397–426 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
- 6.J. Dedecker, “On the Optimality of McLeish’s Conditions for the Central Limit Theorem”, C. R. Acad. Sci. Paris, Mathematique 353 (6), 557–561 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
- 7.J. Dedecker, H. Dehling, and M. S. Taqqu, “Weak Convergence of the Empirical Process of Intermittent Maps in L2 under Long-Range Dependence”, Stochastics and Dynamics 16 (02), p. 1550008 (2015).CrossRefzbMATHGoogle Scholar
- 8.J. Dedecker, S. Gouëzel, and F. Merlevède, “Some Almost Sure Results for Unbounded Functions of Intermittent Maps and their Associated Markov Chains”, Ann. Inst. H. Poincaré (B), 46 (3), 796–821 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
- 9.J. Dedecker, F. Merlevède, and D. Volný, “On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria”, J. Theor. Probab. 20 (4), 971–1004 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
- 10.J. Dedecker and C. Prieur, “New Dependence Coefficients. Examples and Applications to Statistics”, Probab. Theory and Rel. Fields 132 (2), 203–236 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
- 11.M. I. Gordin, “Central Limit Theorem for Stationary Processes”, Dokl. Akad. Nauk SSSR 188 (4), p. 739 (1969).MathSciNetzbMATHGoogle Scholar
- 12.U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time Series (AMS, Providence, RI, 2008).zbMATHGoogle Scholar
- 13.E. J. Hannan, “Central Limit Theorems for Time Series Regression”, Probab. Theory and Rel. Fields 26 (2), 157–170 (1973).MathSciNetzbMATHGoogle Scholar
- 14.W. Liu and W. B. Wu, “Asymptotics of Spectral Density Estimates”, Econometric Theory, pp. 1218–1245 (2010).Google Scholar
- 15.C. Liverani, B. Saussol, and S. Vaienti, “A Probabilistic Approach to Intermittency”, Ergodic Theory and Dynamical Systems 19 (03), 671–685 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
- 16.V. Pipiras and M. S. Taqqu, Long-Range Dependence and Self-Similarity, in Cambridge Ser. in Statist. and Probab. Math. (Cambridge Univ. Press, 2017).Google Scholar
- 17.M. B. Priestley, Spectral Analysis and Time Series (Academic Press, London–New York, 1981).zbMATHGoogle Scholar
- 18.E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants, in Springer Science & Business Media (Springer, 1999).Google Scholar
- 19.M. Rosenblatt, “A Central Limit Theorem and a Strong Mixing Condition”, Proc. Nat. Acad. Sci. USA 42 (1), 43–47 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
- 20.M. Rosenblatt, Stationary Sequences and Random Fields, in Springer Science & Business Media (Springer, 2012).Google Scholar
- 21.E. Seneta, Regularly Varying Functions (Springer, 2006).zbMATHGoogle Scholar
- 22.W. B.Wu, “Nonlinear System Theory: Another Look at Dependence”, Proc. Nat. Acad. Sci. USA 102 (40), 14150–14154 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
- 23.W. B.Wu, “Asymptotic Theory for Stationary Processes”, Statist. Interface 4 (2), 207–226 (2011).MathSciNetCrossRefGoogle Scholar
Copyright information
© Allerton Press, Inc. 2018