Mathematical Methods of Statistics

, Volume 27, Issue 4, pp 245–267 | Cite as

On Optimal Cardinal Interpolation

  • B. LevitEmail author


For the Hardy classes of functions analytic in the strip around real axis of a size 2β, an optimal method of cardinal interpolation has been proposed within the framework of Optimal Recovery [12]. Below this method, based on the Jacobi elliptic functions, is shown to be optimal according to the criteria of Nonparametric Regression and Optimal Design.

In a stochastic non-asymptotic setting, the maximal mean squared error of the optimal interpolant is evaluated explicitly, for all noise levels away from 0. A pivotal role is played by the interference effect, in which the oscillations exhibited by the interpolant’s bias and variance mutually cancel each other. In the limiting case β → ∞, the optimal interpolant converges to the well-knownNyquist–Shannon cardinal series.


cardinal interpolation Optimal Recovery Hardy classes Jacobi elliptic functions infinite Blaschke product interference effect sinc filter 

2000 Mathematics Subject Classification

62G08 secondary 62K05 33E05 42A15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. I. Akhiezer, Elements of the Theory of Elliptic Functions (AMS, Providence, R.I., 1970).Google Scholar
  2. 2.
    L. Artiles and B. Levit, “Adaptive Regression on the Real Line in Classes of Smooth Functions”, Austrian J. Statist. 32, 99–129 (2003).Google Scholar
  3. 3.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1955), Vol. 2.zbMATHGoogle Scholar
  4. 4.
    R. P. Boas, Entire Functions (Academic Press, New York, 1954).zbMATHGoogle Scholar
  5. 5.
    J. Cho and B. Levit, “Asymptotic Optimality of Periodic Spline Interpolation in Nonparametric Regression”, J. Statist. Theory Pract. 2, 465–474 (2008).CrossRefzbMATHGoogle Scholar
  6. 6.
    Y. Golubev, B. Levit, and A. Tsybakov, “Asymptotically Efficient Estimation of Analytic Functions in Gaussian Noise”, Bernoulli 2, 167–181 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1994), 5th ed.zbMATHGoogle Scholar
  8. 8.
    I. Ibragimov, “Estimation of Analytic Functions”, in IMS Lecture Notes Monogr. Ser. 36 (2001), pp. 359–383.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    B. Ya. Levin, Yu. Lyubarski, M. Sodin, and V. Tkachenko, Lectures on Entire Functions (AMS, Providence, RI, 1996).CrossRefGoogle Scholar
  10. 10.
    B. Levit, “Some New Perspectives in Best Approximation and Interpolation of Random Data”, Math. Meth. Statist. 22, 165–192 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    B. Levit, “Variance-Optimal Data Approximation Using the Abel–Jacobi Functions”, Math. Meth. Statist. 24, 37–54 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    B. Levit, “Optimal Methods of Interpolation in Nonparametric Regression”, Math. Meth. Statist. 25, 235–261 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. I.Markushevich, The Theory of Functions of a Complex Variable (Chelsea Publ., New York, 1985).Google Scholar
  14. 14.
    K. Yu. Osipenko, Optimal Recovery of Analytic Functions (Nova Science Publ., New York, 2000).Google Scholar
  15. 15.
    A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977).zbMATHGoogle Scholar
  16. 16.
    W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987), 3d ed.zbMATHGoogle Scholar
  17. 17.
    I. J. Schoenberg, Cardinal Spline Interpolation (SIAM, Philadelphia, PA, 1973).CrossRefzbMATHGoogle Scholar
  18. 18.
    A. N. Shiryaev, Probability-1, in Graduate Texts in Mathematics (Springer, New York, 2016), 3rd ed.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Dept. Math. and Statist.Queen’s Univ.Kingston ONCanada

Personalised recommendations