Advertisement

Russian Mathematics

, Volume 63, Issue 2, pp 62–73 | Cite as

The Unique Solvability of Boundary Value Problems for a 3D Elliptic Equation With Three Singular Coefficients

  • A. K. UrinovEmail author
  • K. T. KarimovEmail author
Article

Abstract

We state and study several boundary value problems for an elliptic equation with three singular coefficients in a rectangular parallelepiped. Using the method of energy integrals, we prove the uniqueness of solutions of the stated problems. For proving the existence of solutions, we use the spectral Fourier method based on separation of variables. We construct solutions to the stated problems in the form of the sum of the double Fourier—Bessel series. We justify the uniform convergence of the constructed series with the help of asymptotic bounds for Bessel functions of real and imaginary arguments. Using these bounds, we estimate each term of the series, which allows us to prove the convergence of the series and its derivatives up to the second order inclusive and to justify the existence theorem in the class of regular solutions.

Key words

Keldysh problem elliptic equation singular coefficient spectral method uniqueness of solution existence of solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bers, L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics (Wiley, New York, London, 1958).zbMATHGoogle Scholar
  2. 2.
    Serbina, L. I. A Problem for the Linearized Boussinesq Equation With a Nonlocal Samarskii Condition, Diff. equat. 38, No. 8, 1187–1194 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bitsadze, A. V. Some Classes of Partial Differential Equations (Nauka, Moscow, 1981) [in Russian].zbMATHGoogle Scholar
  4. 4.
    Gilbert, R. Function Theoretic Methods in Partial Differential Equations (Academic Press, New York, 1969).zbMATHGoogle Scholar
  5. 5.
    Smirnov, M. M. Degenerate Elliptic and Hyperbolic Equations (Nauka, Moscow, 1966) [in Russian].Google Scholar
  6. 6.
    Salakhitdinov, M. S. and Mirsaburov, M. Nonlocal Problems for Mixed-Type Equations with Singular Coefficients (Universitet, Tashkent, 2005) [in Russian].Google Scholar
  7. 7.
    Salakhitdinov, M. S. and Urinov, A. K. To Spectral Theory of Equations of Mixed Type (Mumtoz So’z, Tashkent, 2010) [in Russian].Google Scholar
  8. 8.
    Khiyirbekov, T. E. “Solution of Problem N for a Certain n-Dimensional Equation in a Normal Domain”, Kuibyshevsk. Volzhsk. Matem. Sborn., No. 8, 221–226 (1971).Google Scholar
  9. 9.
    Khiyirbekov, T. E. “Solution of Problem T 3+ for a Certain 3D Equation in an Arbitrary Domain”, Kuibyshevsk. Volzhsk. Matem. Sborn., No. 8, 215–220 (1971).Google Scholar
  10. 10.
    Nazipov, I. T., “Solution of the Spatial Tricomi Problem for a Singular Mixed-Type Equation by the Method of Integral Equations”, Russian Mathematics, No. 3, 69–85 (2011).Google Scholar
  11. 11.
    Nieto, J. J., Karimov, E. T. “The Dirichlet Problem for a 3D Elliptic Equation with Two Singular Coefficients”, Comput. and Math. Appl. 62, 214–224 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Salakhitdinov, M. S. and Karimov, E. T. “Spatial Boundary Problem with the Dirichlet-Neumann Condition for a Singular Elliptic Equation”, Appl. Math. and Comput. 219, 3469–3476 (2012).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Karimov, E. T. “On a Boundary Problem with Neumann’s Condition for 3D Singular Elliptic Equations”, Appl. Math. Lett. 23, 517–522 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nieto, J. J., Karimov, E. T. “On an Analogue of the Holmgren’s Problem for 3rd Singular Elliptic Equation”, Asian-European J. Math. 5, No. 2 (2012).Google Scholar
  15. 15.
    Karimov, K. T. “The Dirichlet Problem for a 3D Elliptic Equation With Two Singular Coefficients”, Uzbeksk. Matem. Zhurn., No. 1, 96–105 (2017).Google Scholar
  16. 16.
    Urinov, A. K. and Karimov, K. T. “The Dirichlet-Neumann Problem for a 3D Elliptic Equation with Two Singular Coefficients”, Vestn. Nats. Un-ta Uzbekistana 2/1, 195–206 (2017).Google Scholar
  17. 17.
    Urinov, A. K. and Karimov, K. T. “The Dirichlet Problem for an Elliptic Equation with Three Singular Coefficients”, VIII Internat. Conf. in Mathematical Modeling (Yakutsk, 2017), P. 59.Google Scholar
  18. 18.
    Karimov, K. T. “The Boundary Value Problem for an Elliptic Equation with Three Singular Coefficients in a 3D Space”, Uzbeksk. Matem. Zhurn., No. 4, 59–66 (2017).Google Scholar
  19. 19.
    Hachev, M. M. “Some Model Problems in the Theory of Equations of Mixed Type”, Mauchn. Internet Zhurn. “Mir Nauki”, No. 4 (2014).Google Scholar
  20. 20.
    Keldysh, M. V. “On Some Cases of Degeneration of an Equation of Elliptic Type on the Domain Boundary”, Dokl. Akad. Nauk SSSR 77, No. 2, 181–183 (1951).Google Scholar
  21. 21.
    Safina, R. M. textquotedblleft Keldysh Problem for Pulkin’s Equation in a Rectangular Domain”, Vestn. Samarsk. Gos. Un-ta, No. 3, 53–64 (2015).Google Scholar
  22. 22.
    Safina, R. M. “Keldysh Problem for a Mixed-Type Equation of the Second Kind With the Bessel Operator”, Differents. Uravn. 51, No. 10, 1354–1366 (2015).MathSciNetzbMATHGoogle Scholar
  23. 23.
    Watson, G. N. A Treatise on the Theory of Bessel Functions (The University Press, 1922; In. Lit., Moscow, 1949), Vol. 1.zbMATHGoogle Scholar
  24. 24.
    Pul’kin, S. P. “Uniqueness of the Solution of a Singular Problem of Gellerstedt-Tricomi”, Izv. Vyssh. Uchebn. Zaved. Mat., No. 6, 214–225 (1960).Google Scholar
  25. 25.
    Vostrova, L. E. and Pul’kin, S. P. “Singular Problem with a Normal Derivative”, Volzhsk. Matem. Sborn., No. 5, 49–57 (1966).Google Scholar
  26. 26.
    Sabitov, K. B., To the Theory of Mixed-Type Equations (Fizmatlit, Moscow, 2014) [in Russian].Google Scholar
  27. 27.
    Fichtenholz, G. M. Differential and Integral Calculus (Nauka, Moscow, 1969) [in Russian], Vol. 3.Google Scholar
  28. 28.
    Kuznetsov, D. S. Special Functions (Vysshaya Shkola, Moscow, 1962) [in Russian].zbMATHGoogle Scholar
  29. 29.
    Olver, F. Introduction to Asymptotic Methods and Special Functions (Academic Press, N.Y., 1974; Mir, Moscow, 1986).zbMATHGoogle Scholar
  30. 30.
    Fichtenholz, G. M. Differential and Integral Calculus (Nauka, Moscow, 1969) [in Russian], Vol. 2.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Fergana State UniversityFerganaRepublic of Uzbekistan

Personalised recommendations