Advertisement

Russian Mathematics

, Volume 63, Issue 1, pp 79–86 | Cite as

Computational (Numerical) Diameter in a Context of General Theory of a Recovery

  • N. TemirgaliyevEmail author
  • A. Zh. ZhubanyshevaEmail author
Brief communications
  • 1 Downloads

Abstract

We discuss a C(N)D-statement, consisting of the known and elaborating in decades C(N)D-1 statement that can be and should be interpreted as quantitative statement of approximation theory and computational mathematics, which, in common with new prolongations of both C(N)D-2 and C(N)D-3, is suggested as a natural theoretical and computational scheme of further numerical analysis development.

Key words

computational (numerical) diameter (C(N)D) approximation theory in quantitative statement computational mathematics recovery from exact and inexact information limiting error new scheme of numerical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Supported by the Ministry of Education and Science of the Republic of Kazakhstan, projects Nos. AP05136219, AP05132938.

References

  1. 1.
    Temirgaliev, N. “Number-Theoretic Methods and Probability-Theoretic Approach to the Tasks of Analysis. Theory of Investments and Approximations, Absolute Convergence and Transformations of Fourier series”, Vestn. EAU 3, 90–144 (1997) [in Russian].Google Scholar
  2. 2.
    Kolmogorov, A. N. “Über die beste Annäaherung von Funktionen einer gegebenen Funktionen klasse”, Ann. Math. 37, no. (1), 107–110 (1936).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Stechkin, S. B. “About the Best Approximation of Given Classes of Functions by Any Polynomials”, Usp. Mat. Nauk 9, no. (1), 133–134 (1954) [in Russian].Google Scholar
  4. 4.
    Osipenko, K. Y. “Best Approximation of Analytic Functions From Information About Their Values at a Finite Number of Points”, Math. Notes 19, no. (1), 17–23 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Heinrich, S. “Random Approximation in Numerical Analysis”, in: K. D. Bierstedt, A. Pietsch, W. M. Ruess, D. Vogt (Eds.), Functional Analysis (Marcel Dekker, New York, 1993), pp. 123–171.Google Scholar
  6. 6.
    Hardy, G. H. Divergent Series (American Mathematical Soc, 2000).zbMATHGoogle Scholar
  7. 7.
    Volkov, I.I., Ulyanov, P. L. “About Some New Results About the Total Summation Theory of Series and Sequences”, in: R. Cook, Infinite Matrices and Spaces of Sequences (GIFML, Moscow, 1960), pp. 363–467.Google Scholar
  8. 8.
    Kashin, B. S., Saakyan, A. A. Orthogonal Series (American Mathematical Soc, 2005).CrossRefzbMATHGoogle Scholar
  9. 9.
    Korneichuk, N. P. Exact Constants in Approximation Theory (Nauka, Moscow, 1987) [in Russian].Google Scholar
  10. 10.
    Kashin, B. S., Kulikova, T. Y. “On the Validity for Frames of a Result Concerning Orthogonal Systems”, Math. Notes 77, no. (2), 280–282 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Blatter, K. Wavelet Analysis. Fundamentals of Theory (Tekhnosfera, Moscow, 2004) [Russian trasnala-tion].Google Scholar
  12. 12.
    Novikov, I. Ya., Protasov, V. Yu., Skopina, M. A. Theory of Wavelets (Fizmatlit, Moscow, 2005) [in Russian].zbMATHGoogle Scholar
  13. 13.
    Temlyakov, V. N. Approximation of Periodic Functions (Comput. math. and anal. ser.) (Nova Sci. Publ., Commack, NY, 1993).zbMATHGoogle Scholar
  14. 14.
    Tikhomirov, V. M. Some Questions of Approximation Theory (Moscow Univ. Press, Moscow, 1976) [in Russian].Google Scholar
  15. 15.
    Zygmund, A. Trigonometric Series (Mir, Moscow, 1965) [Russian translation].zbMATHGoogle Scholar
  16. 16.
    Ryabenky, V. S. Introduction to Computational Mathematics (Nauka, Moscow, 1994) [in Russian].Google Scholar
  17. 17.
    Temlyakov, V. N. Greedy Approximation (Cambridge University Press, Cambridge, 2011).CrossRefzbMATHGoogle Scholar
  18. 18.
    Sard, A. “Best Approximate Integration Formulas; Best Approximation Formulas”, Amer. J. Math. 71, 80–91 (1949).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Nikol’skii, S. M. “Estimates for Approximations by Quadrature Formulae”, Usp. Mat. Nauk 5, No. (2(36)) 165–177 (1950).Google Scholar
  20. 20.
    Bakhvalov, N. S. “About Approximate Calculation of Multiple Integrals”, Vestn. Moscow State University. Ser. Math mekhan. 4, 3–18 (1959) [in Russian].Google Scholar
  21. 21.
    Korobov, N. M. Number Theoretic Methods in Approximate Analysis (Fizmatgiz, Moscow, 1963) [in Russian].zbMATHGoogle Scholar
  22. 22.
    Sharygin, I. F. “A Lower Bound for the Error in Quadrature Formulas for Classes of Functions”, Zhurn. Vychisl. Matem. i Matem. Fiz. 3, no. (3), 370–376 (1963) [in Russian].Google Scholar
  23. 23.
    Babushka, I., Sobolev, S. L. “Optimization of Numerical Methods (Conditional Extremum of Algorithms Concerning Data From Tables of Special Functions, Computer Speeds and Properties, Standard Schemes and Bounds of Unknown Functions)”, Apl. Matem. 10, 96–129 (1965).Google Scholar
  24. 24.
    Ioffe, A. D., Tikhomirov, V. M. “Duality of Convex Functions, and Extremal Problems”, Russian Math. Surveys 236, 53–124 (1968).CrossRefzbMATHGoogle Scholar
  25. 25.
    Babenko, K. I. Fundamentals of Numerical Analysis (Nauka, Moscow, 1986).Google Scholar
  26. 26.
    Micchelli, C. A. and Rivlin, T. J. “A Survey of Optimal Recovery”, in: C. A. Micchelli and T. J. Rivlin (Eds.), Optimal Estimation in Approximation Theory (Plenum Press, New York, 1977), pp. 1–54.CrossRefGoogle Scholar
  27. 27.
    Fisher, S. D., Micchelli, Ch. A. “Optimal Sampling of Holomorphic Functions”, Amer. J. Math. 106, no. (3), 593–609 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pietsch, A. Eigenvalues and s-Numbers (Geest and Portig, Leipzig and Cambridge Univ. Press, Cambridge, 1987).zbMATHGoogle Scholar
  29. 29.
    Traub, J. F., Wasilkowski, G. W. and Wozniakowski, H. Information-Based Complexity (Academic Press, New York, 1988).zbMATHGoogle Scholar
  30. 30.
    Novak, E., Wozniakowski, H. Tractability of Multivariate Problems. Linear information, EMS Tracts Math. 6. Zurich (European Math. Soc. Publishing House, 2008), Vol. 1.CrossRefzbMATHGoogle Scholar
  31. 31.
    Lokutsievskiy, O. V., Gavrikov, M. B. Foundations of Numerical Analysis (“Janus”, Moscow, 1995).Google Scholar
  32. 32.
    Plaskota, L. Noisy Information and Computational Complexity (Cambridge University Press, 1996).CrossRefzbMATHGoogle Scholar
  33. 33.
    Magaril-Il’yaev, G. G., Osipenko, K. Y. “Optimal Recovery of Values of Functions and Their Derivatives From Inaccurate Data on the Fourier Transform”, Sbornik: Mathematics 195, no. (10), 1461–1476 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Marchuk, A. G., Osipenko, K. Yu. “Best Approximation of Functions Specified With an Error at a Finite Number of Points”, Mathematical Notes of the Academy of Sciences of the USSR 17, no. (3), 207–212 (1975).CrossRefzbMATHGoogle Scholar
  35. 35.
    Azhgaliev, Sh., Temirgaliev, N., “Informativeness of Linear Functionals”, Mathematical Notes 73, no. (5), 759–768 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Temirgaliev, N., Zhubanysheva, A. “Order Estimates of the Norms of Derivatives of Functions With Zero Values on Linear Functionals and Their Applications”, Russian Mathematics 61, no. (3), 77–82 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhubanysheva, A. Zh., Temirgaliyev, N. “Informative Cardinality of Trigonometric Fourier Coefficients and Their Limiting Error in the Discretization of a Differentiation Operator in Multidimensional Sobolev Classes”, Computational Mathematics and Mathematical Physics 55, no. (9), 1432–1443 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Temirgaliev, N., Sherniyazov, K. E., Berikhanova, M. E. “Exact Orders of Computational (Numerical) Diameters in Problems of Reconstructing Functions and Sampling Solutions of the Klein–Gordon Equation from Fourier Coefficients”, Proc. Steklov Inst. Math. 282, no. (1), 165–191 (2013).MathSciNetCrossRefGoogle Scholar
  39. 39.
    Temirgaliev, N., Abikenova, Sh. K., Zhubanysheva, A. Zh, Taugynbaeva, G. E. “Discretization of Solutions to a Wave Equation, Numerical Differentiation, and Function Recovery With the Help of Computer (Numerical) Diameter”, Russian Mathematics, No. 8, 86–93 (2013).zbMATHGoogle Scholar
  40. 40.
    Abikenova, S., Utesov, A., Temirgaliev, N. “On the Discretization of Solutions of the Wave Equation With Initial Conditions From Generalized Sobolev Classes”, Mathematical Notes 91, no. (3), 430–434 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Temirgaliev, N., Kudaibergenov, S. S., Shomanova, A. A. “Applications of Smolyak’s Quadrature Formulas to the Numerical Integration of Fourier Coefficients and in Recovery Problems”, Russian Mathematics 54, no. (3), 45–62 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ibatulin, I. Zh., Temirgaliev, N. “On the Informative Power of All Possible Linear Functionals for the Discretization of Solutions of the Klein–Gordon Equation in the Metric of L 2,∞”, Differ. Equ. 44, No. 4, 510–526, (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Temirgaliev, N. “Tensor Products of Functionals and Their Application”, Dokl. Math. 81, no. (1), 78–82 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Nauryzbaev, N. Zh., Shomanova, A. A., Temirgaliev, N. “On Some Special Effects in the Theory of Numerical Integration and Restoration of Functions”, Russian Mathematic, No. 3, 96–102 (2018).Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.L. N. Gumilyov Eurasian National UniversityAstanaRepublic of Kazakhstan

Personalised recommendations