Advertisement

Russian Mathematics

, Volume 63, Issue 1, pp 55–60 | Cite as

Nonlocal Problem With Saigo Operators for Mixed Type Equation of the Third Order

  • O. A. RepinEmail author
Article
  • 1 Downloads

Abstract

For a third order equation with multiple characteristics we investigate a boundary-value problem with Saigo operators. We prove the unique solvability of the problem for various values of the parameters of generalized fractional integro-differentiation operators

Key words

boundary-value problem Gauss hypergeometric function Saigo operator Fredholm integral equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saigo, M. “A Remark on Integral Operators Involving the Gauss Hypergeometric Function”, Math. Rep. Kyushu Univ. 11, No. 2, 135–143 (1978).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Samko, S. G., Kilbas, A. A., Marichev, O. I. Integrals and Derivatives of Fractional Order and Some Their Applications (Nauka i tekhnika, Minsk, 1987) [in Russian].zbMATHGoogle Scholar
  3. 3.
    Repin, O. A. Boundary-Value Problems With Displacement for Wequations of Hyperbolic and Mixed Types (Saratovsk. Iniv., 1992) [in Russian].Google Scholar
  4. 4.
    Repin, O. A., Kumykova, S. K. “A Problem With Displacement for a Third-Order Equation With Discontinuous Coefficients”, Vestn. Samarsk. Gos. Tekhn. Univ. Ser. Fhiz.-Matem. Nauki, No. 4(29), 17–25 (2012).CrossRefGoogle Scholar
  5. 5.
    Smirnov, M. M. Equations of Mixed Type (Nauka, Moscow, 1970) [in Russian].Google Scholar
  6. 6.
    Kilbas, A. A., Repin, O. A. “An Analog of the Bitsadze-Samarskii Problem for a Mixed Type Equation With a Fractional Derivative”, Differents. Uravneniya 39, No.5, 638–644 (2003).zbMATHGoogle Scholar
  7. 7.
    Trikomi, F. Lectures on Partial Differential Equations (In. lit., Moscow, 1957) [Russian translation].Google Scholar
  8. 8.
    Saigo, M., Kilbas, A. A. “Generalized Fractional Integrals and Derivatives in Hölder Spaces”, In: Rusev P. (ed.) et al. Transform Methods and Special Functions, Proc. of 1-st internat. workshop, Bankya, Bulgaria, August 12–17, 1994 (SCT Publishing, Sofia, 1995), pp. 282–293.Google Scholar
  9. 9.
    Kilbas, A. A. Integral Equations: a Course of Lectures (BGU, Minsk, 2005) [in Russian].zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Samara State Economic UniversitySamaraRussia

Personalised recommendations