Russian Mathematics

, Volume 63, Issue 1, pp 42–54 | Cite as

Nikolskii Inequalities for Trigonometric Polynomials in Different Metrics

  • M. K. PotapovEmail author
  • B. V. SimonovEmail author


S. M. Nikolsky’s inequalities for trigonometric polynomials in different metrics are well-known. We generalize the inequalities for the sums of trigonometric polynomials.

Key words

Nikolsky inequality metric trigonometric polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Supported by Russian Foundation for Basic Research, grant No. 19-01-00457.


  1. 1.
    Timan, M. F. The Approximation Theory of Functions of a Real Variable (Fizmatgiz, Moscow, 1960) [in Russian].Google Scholar
  2. 2.
    Hardy, G. G., Littlewood, D. E., Polia, G. The Inequalities (In. lit., Moscow, 1948) [Russian translation].Google Scholar
  3. 3.
    Besov, O.V., Il’in, V. P., Nikolsky, S. M. Integral Representations of Functions and Embedding Theorems (Nauka, Moscow, 1975) [in Russian].Google Scholar
  4. 4.
    Nikolsky, S. M. Approximation of Functions of Many Variables and Embedding Theorems (Nauka, Moscow, 1977) [in Russian].Google Scholar
  5. 5.
    Uninskii, A. P. “Inequalities in the Mixed Norm for Trigonometric Polynomials and Entire Functions of Finite Degree”, Proceedings of All-Union Symposium on Embedding Theorems (Baku, 1966), pp. 212–218 [in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations